The effect of sensory manipulation on the static balance control and prefrontal cortex activation in older adults with mild cognitive impairment: a functional near-infrared spectroscopy (fNIRS) study.

IF 3.4 2区 医学 Q2 GERIATRICS & GERONTOLOGY
Guocai Xu, Mian Zhou, Jiangna Wang, Dewei Mao, Wei Sun
{"title":"The effect of sensory manipulation on the static balance control and prefrontal cortex activation in older adults with mild cognitive impairment: a functional near-infrared spectroscopy (fNIRS) study.","authors":"Guocai Xu, Mian Zhou, Jiangna Wang, Dewei Mao, Wei Sun","doi":"10.1186/s12877-024-05624-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aimed to investigate the modulatory role of prefrontal cortex (PFC) activity in older adults with mild cognitive impairment (MCI) when sensory cues were removed or presented inaccurately (i.e., increased sensory complexity) during sensory manipulation of a balance task. The research sheds light on the neural regulatory mechanisms of the brain related to balance control in individuals with MCI.</p><p><strong>Methods: </strong>21 older adults with MCI (male/female: 9/12, age: 71.19 ± 3.36 years) were recruited as the experimental group and 19 healthy older adults (male/female: 10/9, age: 70.16 ± 4.54 years) as the control group. Participants were required to perform balance tests under four standing conditions: standing on a solid surface with eyes open, standing on a foam surface with eyes open, standing on a solid surface with eyes closed, and standing on a foam surface with eyes closed. Functional Near-Infrared Spectroscopy (fNIRS) and force measuring platform are used to collect hemodynamic signals of the PFC and center of pressure (COP) data during the balance task, respectively.</p><p><strong>Results: </strong>Under the eyes open condition, significant Group*Surface interaction effects were found in the mean velocity of the COP (MVELO), the mean velocity in the medial-lateral (ML) direction (MVELO<sub>ml</sub>) and the 95% confidence ellipse area of the COP (95%AREA-CE). Additionally, significant Group*Surface interaction effect was found in the left orbitofrontal cortex (L-OFC). The significant group effects were detected for three ROI regions, namely the left ventrolateral prefrontal cortex (L-VLPFC), the left dorsolateral prefrontal cortex (L-DLPFC), the right dorsolateral prefrontal cortex (R-DLPFC). Under the eyes closed condition, the significant Group*Surface interaction effects were found in root mean square (RMS), the RMS in the ML direction (RMS<sub>ml</sub>) and the 95%AREA-CE. Additionally, significant group effects were detected for five ROI regions, namely R-VLPFC, the left frontopolar cortex (L-FPC), L-DLPFC, R-DLPFC and R-OFC.</p><p><strong>Conclusion: </strong>Our study emphasizes the role of the PFC in maintaining standing balance control among older adults with MCI, particularly during complex sensory conditions, and provides direct evidence for the role of the PFC during balance control of a clinically relevant measure of balance.</p><p><strong>Trial registration: </strong>ChiCTR2100044221, 12/03/2021.</p>","PeriodicalId":9056,"journal":{"name":"BMC Geriatrics","volume":"24 1","pages":"1020"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Geriatrics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12877-024-05624-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: This study aimed to investigate the modulatory role of prefrontal cortex (PFC) activity in older adults with mild cognitive impairment (MCI) when sensory cues were removed or presented inaccurately (i.e., increased sensory complexity) during sensory manipulation of a balance task. The research sheds light on the neural regulatory mechanisms of the brain related to balance control in individuals with MCI.

Methods: 21 older adults with MCI (male/female: 9/12, age: 71.19 ± 3.36 years) were recruited as the experimental group and 19 healthy older adults (male/female: 10/9, age: 70.16 ± 4.54 years) as the control group. Participants were required to perform balance tests under four standing conditions: standing on a solid surface with eyes open, standing on a foam surface with eyes open, standing on a solid surface with eyes closed, and standing on a foam surface with eyes closed. Functional Near-Infrared Spectroscopy (fNIRS) and force measuring platform are used to collect hemodynamic signals of the PFC and center of pressure (COP) data during the balance task, respectively.

Results: Under the eyes open condition, significant Group*Surface interaction effects were found in the mean velocity of the COP (MVELO), the mean velocity in the medial-lateral (ML) direction (MVELOml) and the 95% confidence ellipse area of the COP (95%AREA-CE). Additionally, significant Group*Surface interaction effect was found in the left orbitofrontal cortex (L-OFC). The significant group effects were detected for three ROI regions, namely the left ventrolateral prefrontal cortex (L-VLPFC), the left dorsolateral prefrontal cortex (L-DLPFC), the right dorsolateral prefrontal cortex (R-DLPFC). Under the eyes closed condition, the significant Group*Surface interaction effects were found in root mean square (RMS), the RMS in the ML direction (RMSml) and the 95%AREA-CE. Additionally, significant group effects were detected for five ROI regions, namely R-VLPFC, the left frontopolar cortex (L-FPC), L-DLPFC, R-DLPFC and R-OFC.

Conclusion: Our study emphasizes the role of the PFC in maintaining standing balance control among older adults with MCI, particularly during complex sensory conditions, and provides direct evidence for the role of the PFC during balance control of a clinically relevant measure of balance.

Trial registration: ChiCTR2100044221, 12/03/2021.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Geriatrics
BMC Geriatrics GERIATRICS & GERONTOLOGY-
CiteScore
5.70
自引率
7.30%
发文量
873
审稿时长
20 weeks
期刊介绍: BMC Geriatrics is an open access journal publishing original peer-reviewed research articles in all aspects of the health and healthcare of older people, including the effects of healthcare systems and policies. The journal also welcomes research focused on the aging process, including cellular, genetic, and physiological processes and cognitive modifications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信