MiR-495 reverses in the mechanical unloading, random rotating and aging induced muscle atrophy via targeting MyoD and inactivating the Myostatin/TGF-β/Smad3 axis.

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Chenyan Zhang, Yile Tian, Xinli Liu, Xuezhou Yang, Shanfeng Jiang, Ge Zhang, Changqing Yang, Wenjing Liu, Weihong Guo, Wenzhe Zhao, Dachuan Yin
{"title":"MiR-495 reverses in the mechanical unloading, random rotating and aging induced muscle atrophy via targeting MyoD and inactivating the Myostatin/TGF-β/Smad3 axis.","authors":"Chenyan Zhang, Yile Tian, Xinli Liu, Xuezhou Yang, Shanfeng Jiang, Ge Zhang, Changqing Yang, Wenjing Liu, Weihong Guo, Wenzhe Zhao, Dachuan Yin","doi":"10.1016/j.abb.2024.110273","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanical unloading can lead to homeostasis imbalance and severe muscle disease, in which muscle atrophy was one of the disused diseases. However, there were limited therapeutic targets for such diseases. In this study, miR-495 was found dramatically reduced in atrophic skeletal muscle induced by mechanical unloading models both in vitro and in vivo, including the random positioning model (RPM), tail-suspension (TS) model, and aged mice model. Enforced miR-495 expression by its mimic could enormously facilitate the differentiation and regeneration of both mouse myoblast C2C12 cells and muscle satellite cells. Furthermore, MyoD was proved as the directly interacted gene of miR-495, and their interaction was crucial for myotube formation. Enforced miR-495 expression could intensively strengthen the muscle mass, in situ muscular electrophysiological indexes, including peak tetanic tension (Po) and peak twitch tension (Pt), and the cross-sectional areas (CSA) of muscle fibers via targeting MyoD and inactivating the Myostatin/TGF-β/Smad3 signaling pathway, indicating that miR-495 can be proposed as an effective target for muscle atrophy treatment induced by in the mechanical unloading, random rotating and aging.</p>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":" ","pages":"110273"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.abb.2024.110273","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanical unloading can lead to homeostasis imbalance and severe muscle disease, in which muscle atrophy was one of the disused diseases. However, there were limited therapeutic targets for such diseases. In this study, miR-495 was found dramatically reduced in atrophic skeletal muscle induced by mechanical unloading models both in vitro and in vivo, including the random positioning model (RPM), tail-suspension (TS) model, and aged mice model. Enforced miR-495 expression by its mimic could enormously facilitate the differentiation and regeneration of both mouse myoblast C2C12 cells and muscle satellite cells. Furthermore, MyoD was proved as the directly interacted gene of miR-495, and their interaction was crucial for myotube formation. Enforced miR-495 expression could intensively strengthen the muscle mass, in situ muscular electrophysiological indexes, including peak tetanic tension (Po) and peak twitch tension (Pt), and the cross-sectional areas (CSA) of muscle fibers via targeting MyoD and inactivating the Myostatin/TGF-β/Smad3 signaling pathway, indicating that miR-495 can be proposed as an effective target for muscle atrophy treatment induced by in the mechanical unloading, random rotating and aging.

MiR-495通过靶向MyoD和激活Myostatin/TGF-β/Smad3轴,逆转了机械卸载、随机旋转和老化诱导的肌肉萎缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of biochemistry and biophysics
Archives of biochemistry and biophysics 生物-生化与分子生物学
CiteScore
7.40
自引率
0.00%
发文量
245
审稿时长
26 days
期刊介绍: Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics. Research Areas Include: • Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing • Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions • Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信