{"title":"Metallothioneins: an unraveling insight into remediation strategies of plant defense mechanisms","authors":"Lekshmi Sreelatha, Ardra Lekshmi Ambili, Smitha Chandran Sreedevi, Deepthi Achuthavarier","doi":"10.1007/s11356-024-35790-6","DOIUrl":null,"url":null,"abstract":"<div><p>Phytoremediation is an eco-friendly, sustainable way to clean up the environment using green plants that effectively remove and degrade pollutants from soil, water, or air. Certain hyperaccumulator plants can effectively mitigate heavy metals, organic compounds, and radioactive substances through absorption, adsorption, and transformation. This method offers a cost-effective and esthetically pleasing alternative to traditional remediation techniques, contributing to the restoration of contaminated ecosystems. Nanophytoremediation entails combining nanotechnology with phytoremediation techniques to improve plant-based environmental cleanup efficiency. Nanoparticles (NPs) or engineered NPs are applied to improve plants’ absorption and transport of contaminants. This approach addresses limitations in traditional phytoremediation, offering increased remediation rates and effectiveness, particularly in removing pollutants like heavy metals. This review paper compares traditional phytoremediation and emerging nanophytoremediation, emphasizing their impact on metallothionein proteins in plants. The work reveals how plants get rid of unwanted foreign substances that build up on their bodies and keep homeostasis by using metallothionein proteins. These proteins effectively reduce the effects of these substances without affecting the plant’s normal growth. The efficiency, cost-effectiveness, and ecological implications of the phytoremediation technologies in the light of the metallothionein protein action provide insights into optimizing contaminant detoxification strategies for polluted environments.</p></div>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":"32 2","pages":"405 - 427"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11356-024-35790-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11356-024-35790-6","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Phytoremediation is an eco-friendly, sustainable way to clean up the environment using green plants that effectively remove and degrade pollutants from soil, water, or air. Certain hyperaccumulator plants can effectively mitigate heavy metals, organic compounds, and radioactive substances through absorption, adsorption, and transformation. This method offers a cost-effective and esthetically pleasing alternative to traditional remediation techniques, contributing to the restoration of contaminated ecosystems. Nanophytoremediation entails combining nanotechnology with phytoremediation techniques to improve plant-based environmental cleanup efficiency. Nanoparticles (NPs) or engineered NPs are applied to improve plants’ absorption and transport of contaminants. This approach addresses limitations in traditional phytoremediation, offering increased remediation rates and effectiveness, particularly in removing pollutants like heavy metals. This review paper compares traditional phytoremediation and emerging nanophytoremediation, emphasizing their impact on metallothionein proteins in plants. The work reveals how plants get rid of unwanted foreign substances that build up on their bodies and keep homeostasis by using metallothionein proteins. These proteins effectively reduce the effects of these substances without affecting the plant’s normal growth. The efficiency, cost-effectiveness, and ecological implications of the phytoremediation technologies in the light of the metallothionein protein action provide insights into optimizing contaminant detoxification strategies for polluted environments.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.