Performance of Persicaria amphibia (L.) for Phytoremediation of Heavy Metals Contaminated Water.

IF 2.7 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Seydahmet Cay, Bahar Yayla, Ahmet Uyanik
{"title":"Performance of Persicaria amphibia (L.) for Phytoremediation of Heavy Metals Contaminated Water.","authors":"Seydahmet Cay, Bahar Yayla, Ahmet Uyanik","doi":"10.1007/s00128-024-03991-x","DOIUrl":null,"url":null,"abstract":"<p><p>Fast-paced global industrialization due to population growth poses negative water implications, such as pollution by heavy metals. Phytoremediation is deemed as an efficient and environmentally friendly alternative which utilizes different types of hyperaccumulator plants known as macrophytes for the removal of heavy metal pollutants from contaminated water. In this study, the removal of Cu(II), Ni(II), Pb(II), and Cd(II) heavy metal ions contaminated water was studied by using an aquatic plant, Persicaria amphibia (L.) collected from Ladik Lake, Samsun, Turkiye. The experiments were carried out hydroponically in the laboratory conditions. Synthetic heavy metals contaminated water (5, 10, 25, 50, 100 mg kg<sup>- 1</sup>), and domestic and industrial water were used in the experiments. The domestic and industrial water samples were taken from Aksu and Batlama streams in Giresun province. All physical plant changes were noted, and pH, conductivity, and dissolved oxygen levels of the hydroponic system were measured regularly during the experiments. In order to determine the effects of heavy metals on the plant, the chlorophyll (a, b and total) and carotenoid contents as well as the biomass of the plant, were measured. According to the phytoremediation experiments the amounts of accumulated heavy metals in plants were found as Cd(II) > Ni(II) > Cu(II) > Pb(II) in single systems and as Cd(II) > Ni(II) > Pb(II) > Cu(II) in competitive systems. The maximum amounts of heavy metals accumulated in plants were determined as 171 ± 9 mg kg-1 for Cd(II), 143 ± 7 mg kg-1 for Ni(II), 134 ± 8 mg kg-1 for Cu(II) and 55 ± 4 mg kg-1 for Pb(II). In addition, bioconcentration factor (BCF) values ​​were calculated to make comparisons with the phytoextraction potential of the plant. This study emphasizes the importance of P. amphibia with high bioaccumulation potential for phytoremediation and suggests that it could be employed to restore water in heavy metal-contaminated areas.</p>","PeriodicalId":501,"journal":{"name":"Bulletin of Environmental Contamination and Toxicology","volume":"114 1","pages":"13"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Environmental Contamination and Toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00128-024-03991-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Fast-paced global industrialization due to population growth poses negative water implications, such as pollution by heavy metals. Phytoremediation is deemed as an efficient and environmentally friendly alternative which utilizes different types of hyperaccumulator plants known as macrophytes for the removal of heavy metal pollutants from contaminated water. In this study, the removal of Cu(II), Ni(II), Pb(II), and Cd(II) heavy metal ions contaminated water was studied by using an aquatic plant, Persicaria amphibia (L.) collected from Ladik Lake, Samsun, Turkiye. The experiments were carried out hydroponically in the laboratory conditions. Synthetic heavy metals contaminated water (5, 10, 25, 50, 100 mg kg- 1), and domestic and industrial water were used in the experiments. The domestic and industrial water samples were taken from Aksu and Batlama streams in Giresun province. All physical plant changes were noted, and pH, conductivity, and dissolved oxygen levels of the hydroponic system were measured regularly during the experiments. In order to determine the effects of heavy metals on the plant, the chlorophyll (a, b and total) and carotenoid contents as well as the biomass of the plant, were measured. According to the phytoremediation experiments the amounts of accumulated heavy metals in plants were found as Cd(II) > Ni(II) > Cu(II) > Pb(II) in single systems and as Cd(II) > Ni(II) > Pb(II) > Cu(II) in competitive systems. The maximum amounts of heavy metals accumulated in plants were determined as 171 ± 9 mg kg-1 for Cd(II), 143 ± 7 mg kg-1 for Ni(II), 134 ± 8 mg kg-1 for Cu(II) and 55 ± 4 mg kg-1 for Pb(II). In addition, bioconcentration factor (BCF) values ​​were calculated to make comparisons with the phytoextraction potential of the plant. This study emphasizes the importance of P. amphibia with high bioaccumulation potential for phytoremediation and suggests that it could be employed to restore water in heavy metal-contaminated areas.

Persicaria amphibia (L.) 在重金属污染水的植物修复中的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
3.70%
发文量
230
审稿时长
1.7 months
期刊介绍: The Bulletin of Environmental Contamination and Toxicology(BECT) is a peer-reviewed journal that offers rapid review and publication. Accepted submissions will be presented as clear, concise reports of current research for a readership concerned with environmental contamination and toxicology. Scientific quality and clarity are paramount.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信