{"title":"Optimizing carbon source addition to control surplus sludge yield via machine learning-based interpretable ensemble model.","authors":"Bowen Li, Li Liu, Zikang Xu, Kexun Li","doi":"10.1016/j.envres.2024.120653","DOIUrl":null,"url":null,"abstract":"<p><p>Appropriate carbon source addition can save operational costs and reduce surplus sludge yield in the wastewater treatment plant (WWTP). However, the link between carbon source and surplus sludge yield remains neglected although machine learning (ML) has become a powerful tool for WWTP, and is a challenge due to more complex multidimensional pattern recognition. Herein, weighted average ensemble strategy was conducted to assemble multiple diverse basic models to obtain better prediction capability to optimize carbon source addition (Model-1) and further control surplus sludge yield (Model-2). The ensemble models significantly outperformed all single models with MAE of 5.82 g/m<sup>3</sup>, MSE of 60.59 and R<sup>2</sup> value of 0.98 in Model-1 and MAE of 15.09 g/m<sup>3</sup>, MSE of 449.01 and R<sup>2</sup> value of 0.93 in Model-2. The optimal input feature subset was explored to reduce model complexity, indicating that the final ensemble models can predict with high precision using relatively few features with MAE of 6.41 g/m<sup>3</sup>, MSE of 78.49 and R<sup>2</sup> value of 0.97 in Model-1 and MAE of 12.82 g/m<sup>3</sup>, MSE of 232.71 and R<sup>2</sup> value of 0.95 in Model-2. Furthermore, the final models were deployed into an offline web application to facilitate their utility in real-world settings, demonstrating 47.25 % savings in carbon source addition and 15.89 % reductions in surplus sludge yield for an extra month of running. This work offers an efficient approach for the WWTP to optimize carbon source addition and provides new insights into controlling surplus sludge yield.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"120653"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envres.2024.120653","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Appropriate carbon source addition can save operational costs and reduce surplus sludge yield in the wastewater treatment plant (WWTP). However, the link between carbon source and surplus sludge yield remains neglected although machine learning (ML) has become a powerful tool for WWTP, and is a challenge due to more complex multidimensional pattern recognition. Herein, weighted average ensemble strategy was conducted to assemble multiple diverse basic models to obtain better prediction capability to optimize carbon source addition (Model-1) and further control surplus sludge yield (Model-2). The ensemble models significantly outperformed all single models with MAE of 5.82 g/m3, MSE of 60.59 and R2 value of 0.98 in Model-1 and MAE of 15.09 g/m3, MSE of 449.01 and R2 value of 0.93 in Model-2. The optimal input feature subset was explored to reduce model complexity, indicating that the final ensemble models can predict with high precision using relatively few features with MAE of 6.41 g/m3, MSE of 78.49 and R2 value of 0.97 in Model-1 and MAE of 12.82 g/m3, MSE of 232.71 and R2 value of 0.95 in Model-2. Furthermore, the final models were deployed into an offline web application to facilitate their utility in real-world settings, demonstrating 47.25 % savings in carbon source addition and 15.89 % reductions in surplus sludge yield for an extra month of running. This work offers an efficient approach for the WWTP to optimize carbon source addition and provides new insights into controlling surplus sludge yield.
期刊介绍:
The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.