Methane production related to microbiota in dairy cattle feces

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Jian Liu , Meng Zhou , Lifeng Zhou , Run Dang , Leilei Xiao , Yang Tan , Meng Li , Jiafeng Yu , Peng Zhang , Marcela Hernández , Eric Lichtfouse
{"title":"Methane production related to microbiota in dairy cattle feces","authors":"Jian Liu ,&nbsp;Meng Zhou ,&nbsp;Lifeng Zhou ,&nbsp;Run Dang ,&nbsp;Leilei Xiao ,&nbsp;Yang Tan ,&nbsp;Meng Li ,&nbsp;Jiafeng Yu ,&nbsp;Peng Zhang ,&nbsp;Marcela Hernández ,&nbsp;Eric Lichtfouse","doi":"10.1016/j.envres.2024.120642","DOIUrl":null,"url":null,"abstract":"<div><div>Methane (CH<sub>4</sub>) emission from livestock feces, led by ruminants, shows a profound impact on global warming. Despite this, we have almost no information on the syntrophy of the intact microbiome metabolisms, from carbohydrates to the one-carbon units, covering multiple stages of ruminant development. In this study, syntrophic effects of polysaccharide degradation and acetate-producing bacteria, and methanogenic archaea were revealed through metagenome-assembled genomes from water saturated dairy cattle feces. Although CH<sub>4</sub> is thought to be produced by archaea, more edges, nodes, and balanced interaction types revealed by network analysis provided a closed bacteria-archaea network. The CH<sub>4</sub> production potential and pathways were further evaluated through dynamic, thermodynamic and <sup>13</sup>C stable isotope analysis. The powerful CH<sub>4</sub> production potential benefited from the metabolic flux: classical polysaccharides, soluble sugar (glucose, galactose, lactose), acetate, and CH<sub>4</sub> produced via typical acetoclastic methanogenesis. In comparison, a cooperative model dominated by hydrogenotrophic methanogenic archaea presented a weak ability to generate CH<sub>4</sub>. Our findings comprehensively link carbon and CH<sub>4</sub> metabolism paradigm to specific microbial lineages which are shaped related to developmental stages of the dairy cattle, directing influencing global warming from livestock and waste treatment.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"267 ","pages":"Article 120642"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935124025465","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Methane (CH4) emission from livestock feces, led by ruminants, shows a profound impact on global warming. Despite this, we have almost no information on the syntrophy of the intact microbiome metabolisms, from carbohydrates to the one-carbon units, covering multiple stages of ruminant development. In this study, syntrophic effects of polysaccharide degradation and acetate-producing bacteria, and methanogenic archaea were revealed through metagenome-assembled genomes from water saturated dairy cattle feces. Although CH4 is thought to be produced by archaea, more edges, nodes, and balanced interaction types revealed by network analysis provided a closed bacteria-archaea network. The CH4 production potential and pathways were further evaluated through dynamic, thermodynamic and 13C stable isotope analysis. The powerful CH4 production potential benefited from the metabolic flux: classical polysaccharides, soluble sugar (glucose, galactose, lactose), acetate, and CH4 produced via typical acetoclastic methanogenesis. In comparison, a cooperative model dominated by hydrogenotrophic methanogenic archaea presented a weak ability to generate CH4. Our findings comprehensively link carbon and CH4 metabolism paradigm to specific microbial lineages which are shaped related to developmental stages of the dairy cattle, directing influencing global warming from livestock and waste treatment.

Abstract Image

奶牛粪便中微生物群与甲烷产生的关系。
以反刍动物为首的家畜粪便排放的甲烷(CH4)对全球变暖有着深远的影响。尽管如此,我们几乎没有关于完整微生物代谢的信息,从碳水化合物到单碳单位,涵盖反刍动物发育的多个阶段。本研究通过对水饱和奶牛粪便进行宏基因组组装,揭示了多糖降解菌和产酸菌以及产甲烷古菌的协同作用。虽然CH4被认为是由古菌产生的,但网络分析揭示的更多的边、节点和平衡的相互作用类型提供了一个封闭的细菌-古菌网络。通过动力学、热力学和13C稳定同位素分析进一步评价了CH4的生产潜力和途径。强大的CH4生产潜力得益于代谢通量:经典的多糖、可溶性糖(葡萄糖、半乳糖、乳糖)、乙酸和通过典型的醋酸裂解产甲烷产生的CH4。相比之下,以氢营养产甲烷古菌为主的合作模式产生CH4的能力较弱。我们的研究结果将碳和甲烷代谢模式与奶牛发育阶段相关的特定微生物谱系全面联系起来,指导牲畜和废物处理对全球变暖的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信