The ameliorative effects of melatonin against BDE-47-induced hippocampal neuronal ferroptosis and cognitive dysfunction through Nrf2-Chaperone-mediated autophagy of ACSL4 degradation.

IF 6.2 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Quan Yuan, Mingwei Wang, Zhaoxiang Zhang, Ruofei Wang, Dechao Wang, Zichun Sang, Pu Zhao, Xiaoli Liu, Xiaoying Zhu, Gaofeng Liang, Hua Fan, Dongmei Wang
{"title":"The ameliorative effects of melatonin against BDE-47-induced hippocampal neuronal ferroptosis and cognitive dysfunction through Nrf2-Chaperone-mediated autophagy of ACSL4 degradation.","authors":"Quan Yuan, Mingwei Wang, Zhaoxiang Zhang, Ruofei Wang, Dechao Wang, Zichun Sang, Pu Zhao, Xiaoli Liu, Xiaoying Zhu, Gaofeng Liang, Hua Fan, Dongmei Wang","doi":"10.1016/j.ecoenv.2024.117542","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies demonstrate that lipid peroxidation-induced ferroptosis participates in 2,2',4,4'-tetrabromodiphenyl ether (BDE-47)-evoked neurotoxicity and cognitive dysfunction. Melatonin has been indicated to confer neuroprotection against brain diseases via its potent anti-ferroptotic effects. Therefore, this study aims to explore whether melatonin can mitigate BDE-47-elicited cognitive impairment via suppressing ferroptosis, and further delineate the underlying mechanisms. Our results found that melatonin administration effectively inhibited BDE-47-induced ferroptosis in mice hippocampi and murine hippocampal neuronal HT-22 cells. Acyl-CoA synthetase long-chain family member 4 (ACSL4), a key lipid metabolism enzyme dictating ferroptosis sensitivity, accompanied by higher MDA and lipid reactive oxygen species (ROS), was remarkably increased under BDE-47 stress, while melatonin supplementation could suppress the elevated ACSL4 in vivo and in vitro. Furthermore, melatonin facilitated lysosomal ACSL4 degradation through enhancing lysosome-associated membrane protein type 2a (LAMP2a) expression and chaperone-mediated autophagy (CMA) activity, while LAMP2a knockdown abrogated the positive effects of melatonin on ACSL4 elimination in BDE-47-treated HT-22 cells. Moreover, nuclear factor erythroid 2-related factor 2 (Nrf2) activation by melatonin contributed to LAMP2a upregulation and CMA of ACSL4 and subsequent neuronal ferroptosis. Importantly, melatonin, CMA activator CA77.1, and ACSL4 inhibitor rosiglitazone (RSG) administration substantially attenuated neuronal/synaptic injury and cognitive deficits following BDE-47 exposure. Taken together, these findings revealed that melatonin could prevent BDE-47-provoked ferroptosis in the hippocampal neurons and mitigate cognitive dysfunction by facilitating ACSL4 degradation via Nrf2-chaperone-mediated autophagy. Therefore, melatonin might be a potential candidate for treating BDE-47-elicited neurotoxicity and neurobehavioral disorder.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"290 ","pages":"117542"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.ecoenv.2024.117542","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Recent studies demonstrate that lipid peroxidation-induced ferroptosis participates in 2,2',4,4'-tetrabromodiphenyl ether (BDE-47)-evoked neurotoxicity and cognitive dysfunction. Melatonin has been indicated to confer neuroprotection against brain diseases via its potent anti-ferroptotic effects. Therefore, this study aims to explore whether melatonin can mitigate BDE-47-elicited cognitive impairment via suppressing ferroptosis, and further delineate the underlying mechanisms. Our results found that melatonin administration effectively inhibited BDE-47-induced ferroptosis in mice hippocampi and murine hippocampal neuronal HT-22 cells. Acyl-CoA synthetase long-chain family member 4 (ACSL4), a key lipid metabolism enzyme dictating ferroptosis sensitivity, accompanied by higher MDA and lipid reactive oxygen species (ROS), was remarkably increased under BDE-47 stress, while melatonin supplementation could suppress the elevated ACSL4 in vivo and in vitro. Furthermore, melatonin facilitated lysosomal ACSL4 degradation through enhancing lysosome-associated membrane protein type 2a (LAMP2a) expression and chaperone-mediated autophagy (CMA) activity, while LAMP2a knockdown abrogated the positive effects of melatonin on ACSL4 elimination in BDE-47-treated HT-22 cells. Moreover, nuclear factor erythroid 2-related factor 2 (Nrf2) activation by melatonin contributed to LAMP2a upregulation and CMA of ACSL4 and subsequent neuronal ferroptosis. Importantly, melatonin, CMA activator CA77.1, and ACSL4 inhibitor rosiglitazone (RSG) administration substantially attenuated neuronal/synaptic injury and cognitive deficits following BDE-47 exposure. Taken together, these findings revealed that melatonin could prevent BDE-47-provoked ferroptosis in the hippocampal neurons and mitigate cognitive dysfunction by facilitating ACSL4 degradation via Nrf2-chaperone-mediated autophagy. Therefore, melatonin might be a potential candidate for treating BDE-47-elicited neurotoxicity and neurobehavioral disorder.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.10
自引率
5.90%
发文量
1234
审稿时长
88 days
期刊介绍: Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信