Selenomethionine alleviates T-2 toxin-induced articular chondrocyte ferroptosis via the system Xc-/GSH/GPX4 axis.

IF 6.2 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Fang-Fang Yu, Juan Zuo, Miao Wang, Shui-Yuan Yu, Kang-Ting Luo, Tong-Tong Sha, Qian Li, Zai-Chao Dong, Guo-Yu Zhou, Feng Zhang, Xiong Guo, Yue Ba, Yan-Jie Wang
{"title":"Selenomethionine alleviates T-2 toxin-induced articular chondrocyte ferroptosis via the system Xc<sup>-</sup>/GSH/GPX4 axis.","authors":"Fang-Fang Yu, Juan Zuo, Miao Wang, Shui-Yuan Yu, Kang-Ting Luo, Tong-Tong Sha, Qian Li, Zai-Chao Dong, Guo-Yu Zhou, Feng Zhang, Xiong Guo, Yue Ba, Yan-Jie Wang","doi":"10.1016/j.ecoenv.2024.117569","DOIUrl":null,"url":null,"abstract":"<p><p>T-2 toxin can induce bone and cartilage development disorder, and oxidative stress plays an important role in it. It is well known that selenomethionine (Se-Met) has antioxidative stress properties and promotes the repair of cartilage lesion, but it remains unclear whether Se-Met can relieve damaged cartilage exposure to T-2 toxin. Here, the oxidative stress and ferroptosis of chondrocytes exposure to T-2 toxin were observed. Mechanistically, T-2 toxin increased ROS, lipid ROS, MDA and Fe<sup>2+</sup> contents in chondrocytes, decreased GSH and GPX4 activity, and inhibited the system Xc<sup>-</sup>/GSH/GPX4 antioxidant axis. In addition, the mitochondria of chondrocytes shrunk and the mitochondrial crest decreased or disappeared. However, Fer-1 (Ferrostatin-1) inhibited ferroptosis induced by T-2 toxin in chondrocytes. The Se-Met alleviated lipid peroxidation, oxidative stress, and damaged mitochondrial in T-2 toxin-infected chondrocytes, enhanced antioxidant enzyme activity, and activated the system Xc<sup>-</sup>/GSH/GPX4 axis, thereby antagonizing ferroptosis of chondrocytes and alleviating articular cartilage damage. In conclusion, our findings highlight the essentiality of ferroptosis in chondrocyte caused by T-2 toxin, elucidate how Se-Met offers protection against this injury and provide research evidence for the drug treatment target of Kashin-Beck disease.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"290 ","pages":"117569"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.ecoenv.2024.117569","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

T-2 toxin can induce bone and cartilage development disorder, and oxidative stress plays an important role in it. It is well known that selenomethionine (Se-Met) has antioxidative stress properties and promotes the repair of cartilage lesion, but it remains unclear whether Se-Met can relieve damaged cartilage exposure to T-2 toxin. Here, the oxidative stress and ferroptosis of chondrocytes exposure to T-2 toxin were observed. Mechanistically, T-2 toxin increased ROS, lipid ROS, MDA and Fe2+ contents in chondrocytes, decreased GSH and GPX4 activity, and inhibited the system Xc-/GSH/GPX4 antioxidant axis. In addition, the mitochondria of chondrocytes shrunk and the mitochondrial crest decreased or disappeared. However, Fer-1 (Ferrostatin-1) inhibited ferroptosis induced by T-2 toxin in chondrocytes. The Se-Met alleviated lipid peroxidation, oxidative stress, and damaged mitochondrial in T-2 toxin-infected chondrocytes, enhanced antioxidant enzyme activity, and activated the system Xc-/GSH/GPX4 axis, thereby antagonizing ferroptosis of chondrocytes and alleviating articular cartilage damage. In conclusion, our findings highlight the essentiality of ferroptosis in chondrocyte caused by T-2 toxin, elucidate how Se-Met offers protection against this injury and provide research evidence for the drug treatment target of Kashin-Beck disease.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.10
自引率
5.90%
发文量
1234
审稿时长
88 days
期刊介绍: Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信