Covalent organic framework-based solid phase microextraction coupled with electrospray ionization mass spectrometry for the quantitative assessment of abnormal bile acids by triclosan exposure in mice.
{"title":"Covalent organic framework-based solid phase microextraction coupled with electrospray ionization mass spectrometry for the quantitative assessment of abnormal bile acids by triclosan exposure in mice.","authors":"Xinye Shi, Yuandi Xue, Yuxin Tu, Canrong Chen, Yajing Zhang, Zian Lin, Zongwei Cai","doi":"10.1016/j.talanta.2024.127398","DOIUrl":null,"url":null,"abstract":"<p><p>Bile acids, a representative diagnostic indicator of liver function, are used to visualize the extent of liver injury. Numerous studies have shown that triclosan (TCS) exposure leads to abnormal bile acid metabolism. As a result, there is a requirement to develop a fast and smart means to quantitatively monitor abnormal bile acids from exposure to triclosan in bio-sample. In this work, solid-phase microextraction (SPME) probes of sea urchin-like covalent organic frameworks (COF) were in situ synthesized on steel needles by using 1,3,5-tris(4-aminophenyl)benzene (TAPB) and 2,5-dimethoxybenzene-1,4-dicarboxaldehyde (DMTP) as two organic units and employed for extraction of bile acids. This TAPB-DMTP-COF-SPME possessed an excellent specified surface area (3351 m<sup>2</sup> g<sup>-1</sup>) and a high regular porosity (∼3.6 nm), which was an ideal adsorbent to concentrate bile acids efficiently. The created probe, together with electrospray ionization mass spectrometry (ESI/MS), proved to be a fast and specific assay for the detection of bile acids in bio-samples. The proposed method had a low limitation of detection (0.03 μg L<sup>-1</sup>), good linearity (R<sup>2</sup> ≥ 0.9931), wide linear range (0.10-1000.00 μg L<sup>-1</sup>) and excellent enrichment factor (63.60-252.00). Based on these excellent properties, it was successful application for the analyzing of bile acids in mice liver and feces, demonstrating the great potential of TAPB-DMTP-COF-SPME-ESI/MS in bile acids detection and liver injury diagnosis.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"285 ","pages":"127398"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.127398","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bile acids, a representative diagnostic indicator of liver function, are used to visualize the extent of liver injury. Numerous studies have shown that triclosan (TCS) exposure leads to abnormal bile acid metabolism. As a result, there is a requirement to develop a fast and smart means to quantitatively monitor abnormal bile acids from exposure to triclosan in bio-sample. In this work, solid-phase microextraction (SPME) probes of sea urchin-like covalent organic frameworks (COF) were in situ synthesized on steel needles by using 1,3,5-tris(4-aminophenyl)benzene (TAPB) and 2,5-dimethoxybenzene-1,4-dicarboxaldehyde (DMTP) as two organic units and employed for extraction of bile acids. This TAPB-DMTP-COF-SPME possessed an excellent specified surface area (3351 m2 g-1) and a high regular porosity (∼3.6 nm), which was an ideal adsorbent to concentrate bile acids efficiently. The created probe, together with electrospray ionization mass spectrometry (ESI/MS), proved to be a fast and specific assay for the detection of bile acids in bio-samples. The proposed method had a low limitation of detection (0.03 μg L-1), good linearity (R2 ≥ 0.9931), wide linear range (0.10-1000.00 μg L-1) and excellent enrichment factor (63.60-252.00). Based on these excellent properties, it was successful application for the analyzing of bile acids in mice liver and feces, demonstrating the great potential of TAPB-DMTP-COF-SPME-ESI/MS in bile acids detection and liver injury diagnosis.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.