Nitrogen addition accelerates aboveground biomass sequestration in old-growth forests by stimulating ectomycorrhizal tree growth.

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Journal of Environmental Management Pub Date : 2025-01-01 Epub Date: 2024-12-18 DOI:10.1016/j.jenvman.2024.123736
Zhichun Yang, Zikun Mao, Wenwen Ji, Antonio Gazol, Shufang Liu, Chao Wang, Ji Ye, Fei Lin, Xugao Wang, Zhanqing Hao, Edith Bai, Zuoqiang Yuan
{"title":"Nitrogen addition accelerates aboveground biomass sequestration in old-growth forests by stimulating ectomycorrhizal tree growth.","authors":"Zhichun Yang, Zikun Mao, Wenwen Ji, Antonio Gazol, Shufang Liu, Chao Wang, Ji Ye, Fei Lin, Xugao Wang, Zhanqing Hao, Edith Bai, Zuoqiang Yuan","doi":"10.1016/j.jenvman.2024.123736","DOIUrl":null,"url":null,"abstract":"<p><p>Examining whether nitrogen (N) enrichment promotes secondary tree growth in both young (YF) and old-growth forests (OF) is crucial. This will help determine how N addition influences plant carbon sequestration across successional phases in temperate forests. We conducted an eight-year N addition experiment (0, 25, 50, 75 kg N ha<sup>-1</sup> yr<sup>-1</sup>) in YF and OF in northeast China to investigate the effects of enhanced in situ N deposition on tree growth. Our results indicated that N addition accelerated the accumulation of annual mean aboveground biomass (ΔAGB) of trees only in OF. Specifically, for the species co-occurring in both YF and OF plots, their ΔAGB in OF peaked under the medium N treatment (3.69 Mg ha<sup>-1</sup> yr<sup>-1</sup>), which was 2.3 times higher than that of YF (1.58 Mg ha<sup>-1</sup> yr<sup>-1</sup>). Regarding mycorrhizal types, only the ΔAGB of EcM-associated trees peaked under the high N treatment (2.81 Mg ha<sup>-1</sup> yr<sup>-1</sup>), increasing by 126.6% compared to the control (1.24 Mg ha<sup>-1</sup> yr<sup>-1</sup>). This increase in biomass primarily came from large trees with a DBH ≥15 cm, most of which are EcM -associated species, such as Pinus koraiensis. In conclusion, continuous N addition increases nutrient supply and alleviates N limitation in old growth forest, leading to faster biomass accumulation. The growth of large-diameter trees with EcM-associated may contribute significantly to aboveground biomass accmulation under N addition. Nutrient limitation is dependent on stand age, mycorrhizal type and size, so these factors must be considered when assessing forest nutrient limitations.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"373 ","pages":"123736"},"PeriodicalIF":8.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2024.123736","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Examining whether nitrogen (N) enrichment promotes secondary tree growth in both young (YF) and old-growth forests (OF) is crucial. This will help determine how N addition influences plant carbon sequestration across successional phases in temperate forests. We conducted an eight-year N addition experiment (0, 25, 50, 75 kg N ha-1 yr-1) in YF and OF in northeast China to investigate the effects of enhanced in situ N deposition on tree growth. Our results indicated that N addition accelerated the accumulation of annual mean aboveground biomass (ΔAGB) of trees only in OF. Specifically, for the species co-occurring in both YF and OF plots, their ΔAGB in OF peaked under the medium N treatment (3.69 Mg ha-1 yr-1), which was 2.3 times higher than that of YF (1.58 Mg ha-1 yr-1). Regarding mycorrhizal types, only the ΔAGB of EcM-associated trees peaked under the high N treatment (2.81 Mg ha-1 yr-1), increasing by 126.6% compared to the control (1.24 Mg ha-1 yr-1). This increase in biomass primarily came from large trees with a DBH ≥15 cm, most of which are EcM -associated species, such as Pinus koraiensis. In conclusion, continuous N addition increases nutrient supply and alleviates N limitation in old growth forest, leading to faster biomass accumulation. The growth of large-diameter trees with EcM-associated may contribute significantly to aboveground biomass accmulation under N addition. Nutrient limitation is dependent on stand age, mycorrhizal type and size, so these factors must be considered when assessing forest nutrient limitations.

通过刺激外生菌根树木的生长,氮添加加速了古老森林地上生物量的螯合。
研究氮(N)富集是否促进幼树和老林的次生树生长是至关重要的。这将有助于确定N添加如何影响温带森林演替阶段的植物碳固存。为了研究原位氮沉降对东北地区青枯树生长的影响,在东北地区青枯树和黄枯树进行了为期8年的施氮量(0、25、50、75 kg N / h -1年-1)试验。结果表明,施氮加速了林分年平均地上生物量的积累(ΔAGB)。其中,在YF和OF样地共生的物种,其ΔAGB in OF在中氮处理下达到峰值(3.69 Mg ha-1年-1),是YF处理(1.58 Mg ha-1年-1)的2.3倍。在菌根类型方面,在高氮处理(2.81 Mg ha-1年-1)下,ecm相关树木只有ΔAGB达到峰值,比对照(1.24 Mg ha-1年-1)增加了126.6%。这种生物量的增加主要来自胸径≥15 cm的大树,其中大部分是与EcM相关的树种,如红松。综上所述,连续施氮增加了原生林的养分供应,缓解了氮素限制,使生物量积累更快。施氮条件下,与ecm相关的大径乔木的生长对地上生物量积累有显著贡献。养分限制取决于林龄、菌根类型和大小,因此在评估森林养分限制时必须考虑这些因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信