Nitrogen addition accelerates aboveground biomass sequestration in old-growth forests by stimulating ectomycorrhizal tree growth.

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Zhichun Yang, Zikun Mao, Wenwen Ji, Antonio Gazol, Shufang Liu, Chao Wang, Ji Ye, Fei Lin, Xugao Wang, Zhanqing Hao, Edith Bai, Zuoqiang Yuan
{"title":"Nitrogen addition accelerates aboveground biomass sequestration in old-growth forests by stimulating ectomycorrhizal tree growth.","authors":"Zhichun Yang, Zikun Mao, Wenwen Ji, Antonio Gazol, Shufang Liu, Chao Wang, Ji Ye, Fei Lin, Xugao Wang, Zhanqing Hao, Edith Bai, Zuoqiang Yuan","doi":"10.1016/j.jenvman.2024.123736","DOIUrl":null,"url":null,"abstract":"<p><p>Examining whether nitrogen (N) enrichment promotes secondary tree growth in both young (YF) and old-growth forests (OF) is crucial. This will help determine how N addition influences plant carbon sequestration across successional phases in temperate forests. We conducted an eight-year N addition experiment (0, 25, 50, 75 kg N ha<sup>-1</sup> yr<sup>-1</sup>) in YF and OF in northeast China to investigate the effects of enhanced in situ N deposition on tree growth. Our results indicated that N addition accelerated the accumulation of annual mean aboveground biomass (ΔAGB) of trees only in OF. Specifically, for the species co-occurring in both YF and OF plots, their ΔAGB in OF peaked under the medium N treatment (3.69 Mg ha<sup>-1</sup> yr<sup>-1</sup>), which was 2.3 times higher than that of YF (1.58 Mg ha<sup>-1</sup> yr<sup>-1</sup>). Regarding mycorrhizal types, only the ΔAGB of EcM-associated trees peaked under the high N treatment (2.81 Mg ha<sup>-1</sup> yr<sup>-1</sup>), increasing by 126.6% compared to the control (1.24 Mg ha<sup>-1</sup> yr<sup>-1</sup>). This increase in biomass primarily came from large trees with a DBH ≥15 cm, most of which are EcM -associated species, such as Pinus koraiensis. In conclusion, continuous N addition increases nutrient supply and alleviates N limitation in old growth forest, leading to faster biomass accumulation. The growth of large-diameter trees with EcM-associated may contribute significantly to aboveground biomass accmulation under N addition. Nutrient limitation is dependent on stand age, mycorrhizal type and size, so these factors must be considered when assessing forest nutrient limitations.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"373 ","pages":"123736"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2024.123736","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Examining whether nitrogen (N) enrichment promotes secondary tree growth in both young (YF) and old-growth forests (OF) is crucial. This will help determine how N addition influences plant carbon sequestration across successional phases in temperate forests. We conducted an eight-year N addition experiment (0, 25, 50, 75 kg N ha-1 yr-1) in YF and OF in northeast China to investigate the effects of enhanced in situ N deposition on tree growth. Our results indicated that N addition accelerated the accumulation of annual mean aboveground biomass (ΔAGB) of trees only in OF. Specifically, for the species co-occurring in both YF and OF plots, their ΔAGB in OF peaked under the medium N treatment (3.69 Mg ha-1 yr-1), which was 2.3 times higher than that of YF (1.58 Mg ha-1 yr-1). Regarding mycorrhizal types, only the ΔAGB of EcM-associated trees peaked under the high N treatment (2.81 Mg ha-1 yr-1), increasing by 126.6% compared to the control (1.24 Mg ha-1 yr-1). This increase in biomass primarily came from large trees with a DBH ≥15 cm, most of which are EcM -associated species, such as Pinus koraiensis. In conclusion, continuous N addition increases nutrient supply and alleviates N limitation in old growth forest, leading to faster biomass accumulation. The growth of large-diameter trees with EcM-associated may contribute significantly to aboveground biomass accmulation under N addition. Nutrient limitation is dependent on stand age, mycorrhizal type and size, so these factors must be considered when assessing forest nutrient limitations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信