Haomiao Li, Xuri Xie, Tianming Qiu, Jingyuan Zhang, Jie Bai, Guang Yang, Ningning Wang, Xiaofeng Yao, Xiance Sun
{"title":"PLIN5 contributes to lipophagy of hepatic stellate cells induced by inorganic arsenic.","authors":"Haomiao Li, Xuri Xie, Tianming Qiu, Jingyuan Zhang, Jie Bai, Guang Yang, Ningning Wang, Xiaofeng Yao, Xiance Sun","doi":"10.1016/j.ecoenv.2024.117547","DOIUrl":null,"url":null,"abstract":"<p><p>Arsenic exposure triggers the activation of hepatic stellate cells (HSCs), resulting in liver fibrosis (LF). A significant decrease in lipid droplets marks the activation of HSCs. However, the exact underlying molecular mechanism remains elusive. Lipophagy, a specialized form of selective autophagy, is crucial for the degradation of lipid droplets to maintain intracellular lipid metabolism homeostasis. In this study, arsenic treatment induced lipophagy, as evidenced by the co-localization of LC3 with lipid droplets. Remarkably, arsenic exposure increased the expression levels of Perilipin 5 (PLIN5), a lipid droplet-associated protein, both at the mRNA and protein levels. Moreover, silencing PLIN5 influenced arsenic-induced lipolysis. Consequently, the results of this study indicate that PLIN5 serves as a substrate protein involved in arsenic-induced lipophagy. This research offers a novel perspective on the mechanisms of arsenic-induced HSCs activation and liver lipid metabolism, potentially guiding new strategies for the prevention and treatment of arsenic-related liver diseases.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"290 ","pages":"117547"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.ecoenv.2024.117547","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Arsenic exposure triggers the activation of hepatic stellate cells (HSCs), resulting in liver fibrosis (LF). A significant decrease in lipid droplets marks the activation of HSCs. However, the exact underlying molecular mechanism remains elusive. Lipophagy, a specialized form of selective autophagy, is crucial for the degradation of lipid droplets to maintain intracellular lipid metabolism homeostasis. In this study, arsenic treatment induced lipophagy, as evidenced by the co-localization of LC3 with lipid droplets. Remarkably, arsenic exposure increased the expression levels of Perilipin 5 (PLIN5), a lipid droplet-associated protein, both at the mRNA and protein levels. Moreover, silencing PLIN5 influenced arsenic-induced lipolysis. Consequently, the results of this study indicate that PLIN5 serves as a substrate protein involved in arsenic-induced lipophagy. This research offers a novel perspective on the mechanisms of arsenic-induced HSCs activation and liver lipid metabolism, potentially guiding new strategies for the prevention and treatment of arsenic-related liver diseases.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.