Teresa Rotolo, Anna Kaye, Lauren Fahrenkrog, Kate Flynn, Elisabeth C Ford, Barry S Selinsky
{"title":"Expression, purification and characterization of a dual function α-dioxygenase/peroxidase from Mycolicibacterium smegmatis.","authors":"Teresa Rotolo, Anna Kaye, Lauren Fahrenkrog, Kate Flynn, Elisabeth C Ford, Barry S Selinsky","doi":"10.1016/j.bbalip.2024.159587","DOIUrl":null,"url":null,"abstract":"<p><p>An open reading frame from the actinobacterium Mycolicibacterium smegmatis annotated as a Prostaglandin H Synthase (PGHS) was expressed with an N-terminal (his)<sub>6</sub> tag and purified to homogeneity. The enzyme has a monomeric molecular weight of 68.3 kD and exists as a dimer in the presence of nonionic detergent. The enzyme uses saturated and unsaturated fatty acids as substrates and catalyzes two reactions: the addition of molecular oxygen alpha to the carboxylate group to form the 2-hydroperoxy fatty acid, followed by reduction to the 2-hydroxy fatty acid. The initial reduction reaction does not require a source of electrons, but electrons must be provided from an appropriate donor such as epinephrine for the reduction reaction to go to completion. Minor reaction products one carbon atom shorter than the original fatty acid substrate are also observed; These most likely arise from the spontaneous decarboxylation of the 2-hydroperoxy fatty acid product to form an aldehyde. This dual function dioxygenase/peroxidase is unusual among the lipid dioxygenases and may represent a bacterial precursor to mammalian PGHS.</p>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":" ","pages":"159587"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbalip.2024.159587","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
An open reading frame from the actinobacterium Mycolicibacterium smegmatis annotated as a Prostaglandin H Synthase (PGHS) was expressed with an N-terminal (his)6 tag and purified to homogeneity. The enzyme has a monomeric molecular weight of 68.3 kD and exists as a dimer in the presence of nonionic detergent. The enzyme uses saturated and unsaturated fatty acids as substrates and catalyzes two reactions: the addition of molecular oxygen alpha to the carboxylate group to form the 2-hydroperoxy fatty acid, followed by reduction to the 2-hydroxy fatty acid. The initial reduction reaction does not require a source of electrons, but electrons must be provided from an appropriate donor such as epinephrine for the reduction reaction to go to completion. Minor reaction products one carbon atom shorter than the original fatty acid substrate are also observed; These most likely arise from the spontaneous decarboxylation of the 2-hydroperoxy fatty acid product to form an aldehyde. This dual function dioxygenase/peroxidase is unusual among the lipid dioxygenases and may represent a bacterial precursor to mammalian PGHS.
期刊介绍:
BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.