Improved enzymatic hydrolysis of corn stover by a low-temperature and low-pressure holding post-treatment.

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Yifan Bu, Hang Xiao, Zhenzhen Wang, Aqiang Chen, Qingshan Huang
{"title":"Improved enzymatic hydrolysis of corn stover by a low-temperature and low-pressure holding post-treatment.","authors":"Yifan Bu, Hang Xiao, Zhenzhen Wang, Aqiang Chen, Qingshan Huang","doi":"10.1016/j.jenvman.2024.123702","DOIUrl":null,"url":null,"abstract":"<p><p>Lignocellulose is one of the world's most abundant and underutilized biomass resources, and its proper treatment and utilization are critical to environmental issues and sustainable development. However, lignocellulose's inherently compact and intricate structure reduces enzymatic hydrolysis's efficiency, which is still an obstacle to overcome. A new pretreatment method with relatively low-temperature and low-pressure holding (LTLPH) after the traditional extrusion, pulp refining instrument (PFI), and instant catapult steam explosion (ICSE) was proposed to obtain a better output of corn stover saccharification. The chemical composition, SEM, swelling capacity of corn stover before and after treatment, and types and contents of mixed sugars were examined to explore the mechanism for the diversity of the enzymatic hydrolysis effect. It was found that the highest reducing sugar in the optimized compounding pretreatment method of ICSE-LTLPH (LTLPH: 70 kPa, 115 °C, 30 min) could reach 27.96 g/L, promoting more than 50%. The cultured single-cell protein content was 8.19% and 7.73% higher than those with glucose and simulated mixed sugar medium, respectively, promisingly replacing commercial sugars for Candida utilis (C. utilis) growth. Therefore, the developed pretreatment method of ICSE-LTLPH could exert better effects on the enzymatic hydrolysis of corn stover, providing a potential for cultivating C. utilis without detoxification of enzymatic hydrolysate.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"373 ","pages":"123702"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2024.123702","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Lignocellulose is one of the world's most abundant and underutilized biomass resources, and its proper treatment and utilization are critical to environmental issues and sustainable development. However, lignocellulose's inherently compact and intricate structure reduces enzymatic hydrolysis's efficiency, which is still an obstacle to overcome. A new pretreatment method with relatively low-temperature and low-pressure holding (LTLPH) after the traditional extrusion, pulp refining instrument (PFI), and instant catapult steam explosion (ICSE) was proposed to obtain a better output of corn stover saccharification. The chemical composition, SEM, swelling capacity of corn stover before and after treatment, and types and contents of mixed sugars were examined to explore the mechanism for the diversity of the enzymatic hydrolysis effect. It was found that the highest reducing sugar in the optimized compounding pretreatment method of ICSE-LTLPH (LTLPH: 70 kPa, 115 °C, 30 min) could reach 27.96 g/L, promoting more than 50%. The cultured single-cell protein content was 8.19% and 7.73% higher than those with glucose and simulated mixed sugar medium, respectively, promisingly replacing commercial sugars for Candida utilis (C. utilis) growth. Therefore, the developed pretreatment method of ICSE-LTLPH could exert better effects on the enzymatic hydrolysis of corn stover, providing a potential for cultivating C. utilis without detoxification of enzymatic hydrolysate.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信