NUDT21 regulates lysyl oxidase-like 2(LOXL2) to influence ECM protein cross-linking in silica-induced pulmonary fibrosis.

IF 6.2 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Lan Peng, Wenqing Sun, Demin Cheng, Xinying Jia, Wenxiu Lian, Ziwei Li, Haojie Xiong, Ting Wang, Yi Liu, Chunhui Ni
{"title":"NUDT21 regulates lysyl oxidase-like 2(LOXL2) to influence ECM protein cross-linking in silica-induced pulmonary fibrosis.","authors":"Lan Peng, Wenqing Sun, Demin Cheng, Xinying Jia, Wenxiu Lian, Ziwei Li, Haojie Xiong, Ting Wang, Yi Liu, Chunhui Ni","doi":"10.1016/j.ecoenv.2024.117572","DOIUrl":null,"url":null,"abstract":"<p><p>Silicosis is a disease caused by prolonged exposure to silica dust. It is the most typical, rapidly progressive, and fatal form of pneumoconiosis. Currently, there is no specific medication available for the treatment of silicosis. LOXL2 is a copper-dependent lysine oxidase whose main function is to catalyze the cross-linking of extracellular matrix components, particularly collagen and elastin. However, few researchers have investigated the role of LOXL2 in the pathogenesis of silicosis. In this study, we demonstrated that LOXL2 is upregulated in silica-inhaled mouse lung tissue and in a TGF-β-induced fibroblast model. In vitro, we confirmed that LOXL2 functions to promote ECM deposition by binding directly to collagen and elastin. We then used scavenger receptor cysteine-rich (SRCR) domains to show that LOXL2 can induce fibrosis independently of its enzymatic activity. Furthermore, we discovered that NUDT21, the LOXL2 upstream regulatory mechanism of LOXL2, alters LOXL2's 3'UTR usage by substituting alternative polyadenylation (APA), thereby modulating LOXL2 expression. By injecting LOXL2 siRNA-loaded liposomes into the tail vein of mice in the silica dust-treated mouse pulmonary fibrosis model, the severity of lung fibrosis was significantly reduced. In this context, LOXL2 is regulated by NUDT21 and may affect pulmonary fibrosis by influencing the cross-linking of ECM proteins. Our research provides a scientific basis for the development of new anti-fibrosis treatment strategies.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"290 ","pages":"117572"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.ecoenv.2024.117572","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Silicosis is a disease caused by prolonged exposure to silica dust. It is the most typical, rapidly progressive, and fatal form of pneumoconiosis. Currently, there is no specific medication available for the treatment of silicosis. LOXL2 is a copper-dependent lysine oxidase whose main function is to catalyze the cross-linking of extracellular matrix components, particularly collagen and elastin. However, few researchers have investigated the role of LOXL2 in the pathogenesis of silicosis. In this study, we demonstrated that LOXL2 is upregulated in silica-inhaled mouse lung tissue and in a TGF-β-induced fibroblast model. In vitro, we confirmed that LOXL2 functions to promote ECM deposition by binding directly to collagen and elastin. We then used scavenger receptor cysteine-rich (SRCR) domains to show that LOXL2 can induce fibrosis independently of its enzymatic activity. Furthermore, we discovered that NUDT21, the LOXL2 upstream regulatory mechanism of LOXL2, alters LOXL2's 3'UTR usage by substituting alternative polyadenylation (APA), thereby modulating LOXL2 expression. By injecting LOXL2 siRNA-loaded liposomes into the tail vein of mice in the silica dust-treated mouse pulmonary fibrosis model, the severity of lung fibrosis was significantly reduced. In this context, LOXL2 is regulated by NUDT21 and may affect pulmonary fibrosis by influencing the cross-linking of ECM proteins. Our research provides a scientific basis for the development of new anti-fibrosis treatment strategies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.10
自引率
5.90%
发文量
1234
审稿时长
88 days
期刊介绍: Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信