Photonic Inks with Dual-Layer Security Features by Encapsulation of Color Tunable Fluorescent Dyes in PMMA Colloidal Microspheres.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Lekshmi Lekshmanan, Adarsh S Pillai, Meghana M Thomas, Priyanka A Sukumaran, Safna Saif, Priya R Thankamani, Kuzhichalil P Surendran, Saju Pillai, Ayyappanpillai Ajayaghosh
{"title":"Photonic Inks with Dual-Layer Security Features by Encapsulation of Color Tunable Fluorescent Dyes in PMMA Colloidal Microspheres.","authors":"Lekshmi Lekshmanan, Adarsh S Pillai, Meghana M Thomas, Priyanka A Sukumaran, Safna Saif, Priya R Thankamani, Kuzhichalil P Surendran, Saju Pillai, Ayyappanpillai Ajayaghosh","doi":"10.1002/smtd.202402125","DOIUrl":null,"url":null,"abstract":"<p><p>To counter economic terrorism by preventing counterfeit currency, documents and high-value commercial products, new-generation security inks with multiple safety features are required. Herein, color-tunable pyrylium and pyridinium dye-encapsulated polymethyl methacrylate (PMMA) colloidal microspheres are reported to exhibiting brilliant emission and photonic properties. A combination of the PMMA colloidal photonic ink having structural color variation and the dye-encapsulated colloidal photonic ink with fluorescence modulation is used for security labeling. The angle-dependent structural color variations, a remarkable 250-fold fluorescence enhancement, non-toxicity, and the rare earth-free formulation have made the ink novel and suitable for dual-layer high-security printing. Covert security patterns and labels are made overt under 365 nm UV light, while also exhibiting angle-dependent structural color. The increased level of security with developed photonic colloidal inks is demonstrated with dual-layer screen-printed images and patterns on flexible substrates.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2402125"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202402125","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To counter economic terrorism by preventing counterfeit currency, documents and high-value commercial products, new-generation security inks with multiple safety features are required. Herein, color-tunable pyrylium and pyridinium dye-encapsulated polymethyl methacrylate (PMMA) colloidal microspheres are reported to exhibiting brilliant emission and photonic properties. A combination of the PMMA colloidal photonic ink having structural color variation and the dye-encapsulated colloidal photonic ink with fluorescence modulation is used for security labeling. The angle-dependent structural color variations, a remarkable 250-fold fluorescence enhancement, non-toxicity, and the rare earth-free formulation have made the ink novel and suitable for dual-layer high-security printing. Covert security patterns and labels are made overt under 365 nm UV light, while also exhibiting angle-dependent structural color. The increased level of security with developed photonic colloidal inks is demonstrated with dual-layer screen-printed images and patterns on flexible substrates.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信