{"title":"Unveiling underlying factors for optimizing light spectrum to enhance microalgae growth.","authors":"Baiba Ievina, Francesco Romagnoli","doi":"10.1016/j.biortech.2024.131980","DOIUrl":null,"url":null,"abstract":"<p><p>Emerging research highlights the potential of specific light spectral regions to significantly enhance microalgae biomass production compared to conventional white light illumination. However, conflicting results of existing studies on the most optimal wavelengths reveal a knowledge gap regarding the underlying factors for optimal spectrum. The present paper aims to address this gap by critically analyzing existing studies on light spectral quality and its impact on microalgae growth. The analysis focuses on identifying the key factors determining an optimal light spectrum for microalgae cultivation. The study critically evaluates the effects of narrow wavelengths, assessing whether monochromatic light may be effective in maximizing biomass yield. While wavelength manipulation has a high potential, a deeper investigation into combining narrow wavelengths at varying ratios to determine the most effective spectral composition for maximizing growth is required. The study aims to provide insights into designing an optimal light spectrum for sustainable and efficient microalgae cultivation.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131980"},"PeriodicalIF":9.7000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.131980","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Emerging research highlights the potential of specific light spectral regions to significantly enhance microalgae biomass production compared to conventional white light illumination. However, conflicting results of existing studies on the most optimal wavelengths reveal a knowledge gap regarding the underlying factors for optimal spectrum. The present paper aims to address this gap by critically analyzing existing studies on light spectral quality and its impact on microalgae growth. The analysis focuses on identifying the key factors determining an optimal light spectrum for microalgae cultivation. The study critically evaluates the effects of narrow wavelengths, assessing whether monochromatic light may be effective in maximizing biomass yield. While wavelength manipulation has a high potential, a deeper investigation into combining narrow wavelengths at varying ratios to determine the most effective spectral composition for maximizing growth is required. The study aims to provide insights into designing an optimal light spectrum for sustainable and efficient microalgae cultivation.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.