Engineering xylose utilization in Cupriavidus necator for enhanced poly(3-hydroxybutyrate) production from mixed sugars.

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
So Jeong Lee, Jiwon Kim, Jung Ho Ahn, Gyeongtaek Gong, Youngsoon Um, Sun-Mi Lee, Kyoung Heon Kim, Ja Kyong Ko
{"title":"Engineering xylose utilization in Cupriavidus necator for enhanced poly(3-hydroxybutyrate) production from mixed sugars.","authors":"So Jeong Lee, Jiwon Kim, Jung Ho Ahn, Gyeongtaek Gong, Youngsoon Um, Sun-Mi Lee, Kyoung Heon Kim, Ja Kyong Ko","doi":"10.1016/j.biortech.2024.131996","DOIUrl":null,"url":null,"abstract":"<p><p>Lignocellulosic biomass is a promising renewable feedstock for biodegradable plastics like polyhydroxyalkanoates (PHAs). Cupriavidus necator, a versatile microbial host that synthesizes poly(3-hydroxybutyrate) (PHB), the most abundant type of PHA, has been studied to expand its carbon source utilization. Since C. necator NCIMB11599 cannot metabolize xylose, we developed xylose-utilizing strains by introducing synthetic xylose metabolic pathways, including the xylose isomerase, Weimberg, and Dahms pathways. Through rational and evolutionary engineering, the RXI22 and RXW62 strains were able to efficiently utilize xylose as the sole carbon source, producing 64.2 wt% (wt%) and 61.4 wt% PHB, respectively. Among the engineered strains, the xylose isomerase-based RXI22 strain demonstrated the most efficient co-fermentation performance, with a PHB content of 75.7 wt% and a yield of 0.32 (g PHB/g glucose and xylose) from mixed sugars. The strains developed in this study represent an enhanced PHA producer, offering a sustainable route for converting lignocellulosic biomass into bioplastics.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131996"},"PeriodicalIF":9.7000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.131996","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Lignocellulosic biomass is a promising renewable feedstock for biodegradable plastics like polyhydroxyalkanoates (PHAs). Cupriavidus necator, a versatile microbial host that synthesizes poly(3-hydroxybutyrate) (PHB), the most abundant type of PHA, has been studied to expand its carbon source utilization. Since C. necator NCIMB11599 cannot metabolize xylose, we developed xylose-utilizing strains by introducing synthetic xylose metabolic pathways, including the xylose isomerase, Weimberg, and Dahms pathways. Through rational and evolutionary engineering, the RXI22 and RXW62 strains were able to efficiently utilize xylose as the sole carbon source, producing 64.2 wt% (wt%) and 61.4 wt% PHB, respectively. Among the engineered strains, the xylose isomerase-based RXI22 strain demonstrated the most efficient co-fermentation performance, with a PHB content of 75.7 wt% and a yield of 0.32 (g PHB/g glucose and xylose) from mixed sugars. The strains developed in this study represent an enhanced PHA producer, offering a sustainable route for converting lignocellulosic biomass into bioplastics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信