Ginsenoside Rd-Loaded Antioxidant Polymersomes to Regulate Mitochondrial Homeostasis for Bone Defect Healing in Periodontitis.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Congjiao Hu, Junqiu Shi, Fan Zhang, Mingchen Lv, Zhenghong Ge, Meiting Feng, Zhen Fan, Danqing Liu, Jianzhong Du, Yao Sun
{"title":"Ginsenoside Rd-Loaded Antioxidant Polymersomes to Regulate Mitochondrial Homeostasis for Bone Defect Healing in Periodontitis.","authors":"Congjiao Hu, Junqiu Shi, Fan Zhang, Mingchen Lv, Zhenghong Ge, Meiting Feng, Zhen Fan, Danqing Liu, Jianzhong Du, Yao Sun","doi":"10.1002/adhm.202403817","DOIUrl":null,"url":null,"abstract":"<p><p>Periodontitis is the leading cause of tooth loss in adults. Initially triggered by bacterial infection, it is characterized by subsequent dysregulation of mitochondrial homeostasis, leading to ongoing loss of periodontal tissue. Mitophagic flux, a critical physiological mechanism for maintaining mitochondrial homeostasis, is compromised in periodontitis. Additionally, increased release of reactive oxygen species (ROS) exacerbates mitochondrial damage. In this study, a ginsenoside Rd (Rd)-loaded antioxidative polymersome (RdAP) is designed, which is self-assembled from a mitochondrial-protective and ROS-scavenging block copolymer, poly(ethylene oxide)-block-poly(phenylboronic acid pinacol ester-conjugated polylysine) (PEO<sub>113</sub>-b-P(Lys-PAPE)<sub>60</sub>). The phenylboronic acid pinacol ester (PAPE) segment exhibits excellent ROS-responsive properties, enabling effective ROS scavenging through antioxidant production. Rd significantly enhances mitophagic flux by 2.5-fold in periodontal ligament stem cells (PDLSCs) under oxidative stress. Together with the antioxidative polymersome, RdAPs restore mitochondrial homeostasis and enhance the osteogenic capacity of PDLSCs, bringing it closer to that of healthy controls. In a mouse model of periodontitis, the bone mass in the RdAP-treated group is 1.37 times greater than that in the untreated periodontitis group. Overall, the findings propose a novel strategy for addressing refractory periodontitis, which may also be applicable to other diseases characterized by mitochondrial homeostasis imbalance.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403817"},"PeriodicalIF":10.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403817","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Periodontitis is the leading cause of tooth loss in adults. Initially triggered by bacterial infection, it is characterized by subsequent dysregulation of mitochondrial homeostasis, leading to ongoing loss of periodontal tissue. Mitophagic flux, a critical physiological mechanism for maintaining mitochondrial homeostasis, is compromised in periodontitis. Additionally, increased release of reactive oxygen species (ROS) exacerbates mitochondrial damage. In this study, a ginsenoside Rd (Rd)-loaded antioxidative polymersome (RdAP) is designed, which is self-assembled from a mitochondrial-protective and ROS-scavenging block copolymer, poly(ethylene oxide)-block-poly(phenylboronic acid pinacol ester-conjugated polylysine) (PEO113-b-P(Lys-PAPE)60). The phenylboronic acid pinacol ester (PAPE) segment exhibits excellent ROS-responsive properties, enabling effective ROS scavenging through antioxidant production. Rd significantly enhances mitophagic flux by 2.5-fold in periodontal ligament stem cells (PDLSCs) under oxidative stress. Together with the antioxidative polymersome, RdAPs restore mitochondrial homeostasis and enhance the osteogenic capacity of PDLSCs, bringing it closer to that of healthy controls. In a mouse model of periodontitis, the bone mass in the RdAP-treated group is 1.37 times greater than that in the untreated periodontitis group. Overall, the findings propose a novel strategy for addressing refractory periodontitis, which may also be applicable to other diseases characterized by mitochondrial homeostasis imbalance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信