A review of ultraviolet filters and their impact on aquatic environments.

IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Garett J Grant, Henry W Lim, Tasneem F Mohammad
{"title":"A review of ultraviolet filters and their impact on aquatic environments.","authors":"Garett J Grant, Henry W Lim, Tasneem F Mohammad","doi":"10.1007/s43630-024-00674-8","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous anthropogenic ultraviolet filters (UVF) have been detected in aquatic environments and concerns have arisen regarding their potential impacts on aquatic organisms. This manuscript reviews the environmental concentrations and potential toxicity of various UVF. The highest concentrations of UVF are typically observed near frequently visited recreational areas and during peak water-activity periods, which suggests that sunscreen application correlates with noticeable alterations in UVF concentrations. Aquatic concentrations of certain filters have sporadically exceeded 10 μg/L, although most measurements remain below 1 µg/L, which is below commonly reported toxicity levels. UVF have also been detected in aquatic organisms, typically ranging from nondetectable levels to a few hundred ng/g, depending on the species. The toxic effects from UVF, such as coral bleaching and diminished growth, have been observed in laboratory settings, however, toxicity tends to manifest only at significantly higher levels than what is typically detected in aquatic environments. Further research is imperative to provide consumers with improved guidance on selecting sunscreen containing UVF that poses the least environmental risk.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemical & Photobiological Sciences","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s43630-024-00674-8","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous anthropogenic ultraviolet filters (UVF) have been detected in aquatic environments and concerns have arisen regarding their potential impacts on aquatic organisms. This manuscript reviews the environmental concentrations and potential toxicity of various UVF. The highest concentrations of UVF are typically observed near frequently visited recreational areas and during peak water-activity periods, which suggests that sunscreen application correlates with noticeable alterations in UVF concentrations. Aquatic concentrations of certain filters have sporadically exceeded 10 μg/L, although most measurements remain below 1 µg/L, which is below commonly reported toxicity levels. UVF have also been detected in aquatic organisms, typically ranging from nondetectable levels to a few hundred ng/g, depending on the species. The toxic effects from UVF, such as coral bleaching and diminished growth, have been observed in laboratory settings, however, toxicity tends to manifest only at significantly higher levels than what is typically detected in aquatic environments. Further research is imperative to provide consumers with improved guidance on selecting sunscreen containing UVF that poses the least environmental risk.

紫外线过滤器及其对水生环境的影响。
在水生环境中发现了许多人为的紫外线过滤器(UVF),人们开始关注它们对水生生物的潜在影响。本文综述了各种紫外线辐射的环境浓度和潜在毒性。紫外线辐射的最高浓度通常出现在人们常去的休闲区附近和水活动高峰期,这表明防晒霜的使用与紫外线辐射浓度的明显变化有关。某些过滤器的水中浓度偶尔超过10 μg/L,尽管大多数测量值仍低于1 μg/L,低于通常报道的毒性水平。在水生生物中也检测到紫外线,根据物种的不同,通常从无法检测到几百纳克/克不等。在实验室环境中已经观察到紫外线辐射的毒性作用,例如珊瑚白化和生长减少,但是毒性往往只在比通常在水生环境中检测到的水平高得多的情况下才会表现出来。进一步的研究是必要的,为消费者提供更好的指导,以选择含有UVF的防晒霜,使其对环境的危害最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Photochemical & Photobiological Sciences
Photochemical & Photobiological Sciences 生物-生化与分子生物学
CiteScore
5.60
自引率
6.50%
发文量
201
审稿时长
2.3 months
期刊介绍: A society-owned journal publishing high quality research on all aspects of photochemistry and photobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信