Mariagrazia Palladini, Mario Gennaro Mazza, Rebecca De Lorenzo, Sara Spadini, Veronica Aggio, Margherita Bessi, Federico Calesella, Beatrice Bravi, Patrizia Rovere-Querini, Francesco Benedetti
{"title":"Circulating inflammatory markers predict depressive symptomatology in COVID-19 survivors.","authors":"Mariagrazia Palladini, Mario Gennaro Mazza, Rebecca De Lorenzo, Sara Spadini, Veronica Aggio, Margherita Bessi, Federico Calesella, Beatrice Bravi, Patrizia Rovere-Querini, Francesco Benedetti","doi":"10.1016/j.cyto.2024.156839","DOIUrl":null,"url":null,"abstract":"<p><p>Growing evidence suggests the neurobiological mechanism upholding post-COVID-19 depression mainly relates to immune response and subsequent unresolved low-grade inflammation. Herein we exploit a broad panel of cytokines serum levels measured in COVID-19 survivors at one- and three-month since infection to predict post-COVID-19 depression. 87 COVID survivors were screened for depressive symptomatology at one- and three-month after discharge through the Beck Depression Inventory (BDI-13) and the Zung Self-Rating Depression Scale (ZSDS) at San Raffaele Hospital. Blood samples were collected at both timepoints and analyzed through Luminex. We entered one-month 42 inflammatory compounds into two separate penalized logistic regression models to evaluate their reliability in identifying COVID-19 survivors suffering from clinical depression at the two timepoints, applied within a machine learning routine. Delta values of analytes lowering between timepoints were entered in a third model predicting presence long-term depression. 5000 bootstraps were computed to determine significance of predictors. The cross-sectional model reached a balance accuracy (BA) of 76 % and a sensitivity of 70 %. Post-COVID-19 depression was predicted by high levels of CCL17, CCL22. On the other hand, CXCL10, CCL2, CCL3, CCL8, CXCL5, CCL15, CCL23, CXCL13, and GM-CSF showed protective effects. The longitudinal model obtained good performance as well (BA = 74 % and sensitivity = 68 %), revealing CXCL16 and CCL25 as additional drivers of clinical depression. Moreover, dynamic changes of analytes over time accurately predicted long-term depression (BA = 76 % and sensitivity = 75 %). Our findings unveil a putative immune profile upholding post-COVID-19 depression, thus reinforcing the need to deepen molecular mechanisms to appropriately target depression.</p>","PeriodicalId":297,"journal":{"name":"Cytokine","volume":"186 ","pages":"156839"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytokine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.cyto.2024.156839","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Growing evidence suggests the neurobiological mechanism upholding post-COVID-19 depression mainly relates to immune response and subsequent unresolved low-grade inflammation. Herein we exploit a broad panel of cytokines serum levels measured in COVID-19 survivors at one- and three-month since infection to predict post-COVID-19 depression. 87 COVID survivors were screened for depressive symptomatology at one- and three-month after discharge through the Beck Depression Inventory (BDI-13) and the Zung Self-Rating Depression Scale (ZSDS) at San Raffaele Hospital. Blood samples were collected at both timepoints and analyzed through Luminex. We entered one-month 42 inflammatory compounds into two separate penalized logistic regression models to evaluate their reliability in identifying COVID-19 survivors suffering from clinical depression at the two timepoints, applied within a machine learning routine. Delta values of analytes lowering between timepoints were entered in a third model predicting presence long-term depression. 5000 bootstraps were computed to determine significance of predictors. The cross-sectional model reached a balance accuracy (BA) of 76 % and a sensitivity of 70 %. Post-COVID-19 depression was predicted by high levels of CCL17, CCL22. On the other hand, CXCL10, CCL2, CCL3, CCL8, CXCL5, CCL15, CCL23, CXCL13, and GM-CSF showed protective effects. The longitudinal model obtained good performance as well (BA = 74 % and sensitivity = 68 %), revealing CXCL16 and CCL25 as additional drivers of clinical depression. Moreover, dynamic changes of analytes over time accurately predicted long-term depression (BA = 76 % and sensitivity = 75 %). Our findings unveil a putative immune profile upholding post-COVID-19 depression, thus reinforcing the need to deepen molecular mechanisms to appropriately target depression.
期刊介绍:
The journal Cytokine has an open access mirror journal Cytokine: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
* Devoted exclusively to the study of the molecular biology, genetics, biochemistry, immunology, genome-wide association studies, pathobiology, diagnostic and clinical applications of all known interleukins, hematopoietic factors, growth factors, cytotoxins, interferons, new cytokines, and chemokines, Cytokine provides comprehensive coverage of cytokines and their mechanisms of actions, 12 times a year by publishing original high quality refereed scientific papers from prominent investigators in both the academic and industrial sectors.
We will publish 3 major types of manuscripts:
1) Original manuscripts describing research results.
2) Basic and clinical reviews describing cytokine actions and regulation.
3) Short commentaries/perspectives on recently published aspects of cytokines, pathogenesis and clinical results.