{"title":"Stimuli-responsive dual-drug loaded microspheres with differential drug release for antibacterial and wound repair promotion.","authors":"Yating Wu, Guihua Wei, Xin Cao, Ran Wang, Xue Gou","doi":"10.1016/j.colsurfb.2024.114455","DOIUrl":null,"url":null,"abstract":"<p><p>The healing of infected wounds is a complex and dynamic process requiring tailored treatment strategies that address both antimicrobial and reparative needs. Despite the development of numerous drugs, few approaches have been devised to optimize the timing of drug release for targeting distinct phases of infection control and tissue repair, limiting the overall treatment efficacy. Here, a stimuli-responsive microsphere encapsulating dual drugs was developed to facilitate differential drug release during distinct phases of antibacterial and repair promotion, thereby synergistically enhancing wound healing. Specifically, zeolite imidazolate backbone in poly (lactic-co-glycolic acid) (PLGA) microsphere was employed for the encapsulation of ciprofloxacin (CIP), responding to acidic environment of bacteria and releasing antibiotic for antibacterial therapy. Meanwhile, curcumin (CUR) encapsulated in PLGA exhibited a gradual release profile, contributing to synergistic antibacterial effects. During the tissue repair phase, near-infrared light stimulation of Fe<sub>3</sub>O<sub>4</sub> embedded in PLGA generated heat, elevating the temperature to the glass transition point of PLGA, which significantly enhanced the release of CUR thereby promoting tissue repair. In vitro experiments demonstrated that the release of CIP and CUR achieved significant antibacterial effects in the early stages of treatment. Additionally, CUR could effectively enhance fibroblast migration and proliferation. In vivo studies using a mouse abscess model revealed that the microspheres exhibited remarkable antibacterial and wound-healing capabilities, effectively enhancing the re-epithelialization of wound tissue and reducing the infiltration of inflammatory cells. This study provides novel strategies for constructing drug delivery systems that match dynamic stages of wound healing, offering improved therapeutic outcomes for infected wounds.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"248 ","pages":"114455"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114455","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The healing of infected wounds is a complex and dynamic process requiring tailored treatment strategies that address both antimicrobial and reparative needs. Despite the development of numerous drugs, few approaches have been devised to optimize the timing of drug release for targeting distinct phases of infection control and tissue repair, limiting the overall treatment efficacy. Here, a stimuli-responsive microsphere encapsulating dual drugs was developed to facilitate differential drug release during distinct phases of antibacterial and repair promotion, thereby synergistically enhancing wound healing. Specifically, zeolite imidazolate backbone in poly (lactic-co-glycolic acid) (PLGA) microsphere was employed for the encapsulation of ciprofloxacin (CIP), responding to acidic environment of bacteria and releasing antibiotic for antibacterial therapy. Meanwhile, curcumin (CUR) encapsulated in PLGA exhibited a gradual release profile, contributing to synergistic antibacterial effects. During the tissue repair phase, near-infrared light stimulation of Fe3O4 embedded in PLGA generated heat, elevating the temperature to the glass transition point of PLGA, which significantly enhanced the release of CUR thereby promoting tissue repair. In vitro experiments demonstrated that the release of CIP and CUR achieved significant antibacterial effects in the early stages of treatment. Additionally, CUR could effectively enhance fibroblast migration and proliferation. In vivo studies using a mouse abscess model revealed that the microspheres exhibited remarkable antibacterial and wound-healing capabilities, effectively enhancing the re-epithelialization of wound tissue and reducing the infiltration of inflammatory cells. This study provides novel strategies for constructing drug delivery systems that match dynamic stages of wound healing, offering improved therapeutic outcomes for infected wounds.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.