BioStructNet: Structure-Based Network with Transfer Learning for Predicting Biocatalyst Functions.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Xiangwen Wang, Jiahui Zhou, Jane Mueller, Derek Quinn, Alexandra Carvalho, Thomas S Moody, Meilan Huang
{"title":"BioStructNet: Structure-Based Network with Transfer Learning for Predicting Biocatalyst Functions.","authors":"Xiangwen Wang, Jiahui Zhou, Jane Mueller, Derek Quinn, Alexandra Carvalho, Thomas S Moody, Meilan Huang","doi":"10.1021/acs.jctc.4c01391","DOIUrl":null,"url":null,"abstract":"<p><p>Enzyme-substrate interactions are essential to both biological processes and industrial applications. Advanced machine learning techniques have significantly accelerated biocatalysis research, revolutionizing the prediction of biocatalytic activities and facilitating the discovery of novel biocatalysts. However, the limited availability of data for specific enzyme functions, such as conversion efficiency and stereoselectivity, presents challenges for prediction accuracy. In this study, we developed BioStructNet, a structure-based deep learning network that integrates both protein and ligand structural data to capture the complexity of enzyme-substrate interactions. Benchmarking studies with different algorithms showed the enhanced predictive accuracy of BioStructNet. To further optimize the prediction accuracy for the small data set, we implemented transfer learning in the framework, training a source model on a large data set and fine-tuning it on a small, function-specific data set, using the CalB data set as a case study. The model performance was validated by comparing the attention heat maps generated by the BioStructNet interaction module with the enzyme-substrate interactions revealed from molecular dynamics simulations of enzyme-substrate complexes. BioStructNet would accelerate the discovery of functional enzymes for industrial use, particularly in cases where the training data sets for machine learning are small.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01391","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Enzyme-substrate interactions are essential to both biological processes and industrial applications. Advanced machine learning techniques have significantly accelerated biocatalysis research, revolutionizing the prediction of biocatalytic activities and facilitating the discovery of novel biocatalysts. However, the limited availability of data for specific enzyme functions, such as conversion efficiency and stereoselectivity, presents challenges for prediction accuracy. In this study, we developed BioStructNet, a structure-based deep learning network that integrates both protein and ligand structural data to capture the complexity of enzyme-substrate interactions. Benchmarking studies with different algorithms showed the enhanced predictive accuracy of BioStructNet. To further optimize the prediction accuracy for the small data set, we implemented transfer learning in the framework, training a source model on a large data set and fine-tuning it on a small, function-specific data set, using the CalB data set as a case study. The model performance was validated by comparing the attention heat maps generated by the BioStructNet interaction module with the enzyme-substrate interactions revealed from molecular dynamics simulations of enzyme-substrate complexes. BioStructNet would accelerate the discovery of functional enzymes for industrial use, particularly in cases where the training data sets for machine learning are small.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信