Multivalent GCase Enhancers: Synthesis and Evaluation of Glyco-Gold Nanoparticles Decorated with Trihydroxypiperidine Iminosugars.

IF 4 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Bioconjugate Chemistry Pub Date : 2025-01-15 Epub Date: 2024-12-19 DOI:10.1021/acs.bioconjchem.4c00496
Francesca Buco, Francesca Clemente, Amelia Morrone, Costanza Vanni, Sergio E Moya, Francesca Cardona, Andrea Goti, Marco Marradi, Camilla Matassini
{"title":"Multivalent GCase Enhancers: Synthesis and Evaluation of Glyco-Gold Nanoparticles Decorated with Trihydroxypiperidine Iminosugars.","authors":"Francesca Buco, Francesca Clemente, Amelia Morrone, Costanza Vanni, Sergio E Moya, Francesca Cardona, Andrea Goti, Marco Marradi, Camilla Matassini","doi":"10.1021/acs.bioconjchem.4c00496","DOIUrl":null,"url":null,"abstract":"<p><p>The present study reports the preparation of the first multivalent iminosugars built onto a glyco-gold nanoparticle core (glyco-AuNPs) capable of stabilizing or enhancing the activity of the lysosomal enzyme GCase, which is defective in Gaucher disease. An <i>N</i>-nonyltrihydroxypiperidine was selected as the bioactive iminosugar unit and further functionalized, via copper-catalyzed alkyne-azide cycloaddition, with a thiol-ending linker that allowed the conjugation to the gold core. These bioactive ligands were obtained with either a linear monomeric or dendritic trimeric arrangement of the iminosugar. The concentration of the bioactive iminosugar on the gold surface was modulated with different amounts of a glucoside bearing a short thiol-ending spacer as the inner ligand. The new mixed-ligand coated glyco-AuNPs were fully characterized, and those with the highest colloidal stability in aqueous medium were subjected to biological evaluation. Glyco-AuNPs with trimeric iminosugar bioactive units showed the ability to stabilize recombinant GCase in a thermal denaturation assay, while Glyco-AuNPs with monomeric iminosugar bioactive units were able to enhance the activity of mutant GCase in Gaucher patient's fibroblasts by 1.9-fold at 2.2 μM.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":"92-103"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00496","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The present study reports the preparation of the first multivalent iminosugars built onto a glyco-gold nanoparticle core (glyco-AuNPs) capable of stabilizing or enhancing the activity of the lysosomal enzyme GCase, which is defective in Gaucher disease. An N-nonyltrihydroxypiperidine was selected as the bioactive iminosugar unit and further functionalized, via copper-catalyzed alkyne-azide cycloaddition, with a thiol-ending linker that allowed the conjugation to the gold core. These bioactive ligands were obtained with either a linear monomeric or dendritic trimeric arrangement of the iminosugar. The concentration of the bioactive iminosugar on the gold surface was modulated with different amounts of a glucoside bearing a short thiol-ending spacer as the inner ligand. The new mixed-ligand coated glyco-AuNPs were fully characterized, and those with the highest colloidal stability in aqueous medium were subjected to biological evaluation. Glyco-AuNPs with trimeric iminosugar bioactive units showed the ability to stabilize recombinant GCase in a thermal denaturation assay, while Glyco-AuNPs with monomeric iminosugar bioactive units were able to enhance the activity of mutant GCase in Gaucher patient's fibroblasts by 1.9-fold at 2.2 μM.

多价GCase增强剂:三羟基哌啶亚糖修饰的糖金纳米颗粒的合成和评价。
本研究报道了第一个建立在糖金纳米颗粒核心(糖aunps)上的多价亚糖的制备,能够稳定或增强戈谢病中缺陷的溶酶体酶GCase的活性。选择n -壬基三羟基哌啶作为生物活性亚糖单元,并通过铜催化的炔叠氮化环加成进一步功能化,以巯基末端连接使其与金核偶联。这些生物活性配体是由亚糖的线性单体或树突状三聚体排列得到的。用不同量的以短巯基末端间隔作为内配体的糖苷来调节金表面上生物活性亚糖的浓度。对新型混合配体包被的糖- aunps进行了充分的表征,并对在水介质中胶体稳定性最高的糖- aunps进行了生物学评价。具有三聚亚糖生物活性单元的Glyco-AuNPs在热变性实验中显示出稳定重组GCase的能力,而具有单聚亚糖生物活性单元的Glyco-AuNPs在2.2 μM时能够将突变GCase在Gaucher患者成纤维细胞中的活性提高1.9倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioconjugate Chemistry
Bioconjugate Chemistry 生物-化学综合
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信