{"title":"Trace Metal Impurities Induce Differences in Lithium-Sulfur Batteries.","authors":"Mengyao Li, Junwei Han, Qiuchen Song, Huan Li, Linkai Peng, Yufei Zhao, Yun Cao, Wei Lv","doi":"10.1021/acsnano.4c14181","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon nanotubes (CNTs) with exceptional conductivity have been widely adopted in lithium-sulfur (Li-S) batteries. While trace metal impurities in CNTs have demonstrated electrocatalytic activity in various catalytic processes, their influence on sulfur electrocatalysis in Li-S batteries has been largely overlooked. Herein, we reveal that the trace metal impurities content in CNTs significantly improves the specific capacity and cycling performance of Li-S batteries by analyzing both our own results and previous literature with CNTs as the sulfur hosts. Even under lean electrolyte conditions (E/S ratio of 5 μL mg<sub>s</sub><sup>-1</sup>), we demonstrate that a small content of metal impurities in CNTs (∼2 wt %) could account for a 14.3% increase in specific capacity and a 14.1% increase in capacity retention under a high sulfur loading of 3.5 mg cm<sup>-2</sup>. The electron transfer from confined metal catalysts within CNTs leads to electron accumulation at the carbon interface, facilitating electron donation to adsorbed sulfur species and lowering the energy barrier for Li<sub>2</sub>S formation.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c14181","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon nanotubes (CNTs) with exceptional conductivity have been widely adopted in lithium-sulfur (Li-S) batteries. While trace metal impurities in CNTs have demonstrated electrocatalytic activity in various catalytic processes, their influence on sulfur electrocatalysis in Li-S batteries has been largely overlooked. Herein, we reveal that the trace metal impurities content in CNTs significantly improves the specific capacity and cycling performance of Li-S batteries by analyzing both our own results and previous literature with CNTs as the sulfur hosts. Even under lean electrolyte conditions (E/S ratio of 5 μL mgs-1), we demonstrate that a small content of metal impurities in CNTs (∼2 wt %) could account for a 14.3% increase in specific capacity and a 14.1% increase in capacity retention under a high sulfur loading of 3.5 mg cm-2. The electron transfer from confined metal catalysts within CNTs leads to electron accumulation at the carbon interface, facilitating electron donation to adsorbed sulfur species and lowering the energy barrier for Li2S formation.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.