Ultrasound-Activated Near-Infrared-II Afterglow Luminescence for Precise Cancer Imaging.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Meng Yuan, Xiao Fang, Wenzheng Liu, Xiaoguang Ge, Ying Wu, Lichao Su, Shi Gao, Jibin Song
{"title":"Ultrasound-Activated Near-Infrared-II Afterglow Luminescence for Precise Cancer Imaging.","authors":"Meng Yuan, Xiao Fang, Wenzheng Liu, Xiaoguang Ge, Ying Wu, Lichao Su, Shi Gao, Jibin Song","doi":"10.1021/acsabm.4c01352","DOIUrl":null,"url":null,"abstract":"<p><p>Afterglow fluorescence imaging has been extensively assessed in ultrasensitive bioimaging. Since it eliminates the need for real-time excitation light and thereby circumvents the autofluorescence background of tissue, it holds tremendous potential in accurate biomedical imaging. However, current afterglow probes are rare and emit light only in the visible to near-infrared (NIR) range, which is inadequate for <i>in vivo</i> imaging. To resolve this issue, an ultrasound (US)-activated NIR-II afterglow luminescence probe (NPs-Ce4-SN) emitting afterglow luminescence with a peak at ∼1100 nm was developed. This peak is nearly 400 nm red-shifted compared with other reported afterglow probes. Of note, after US termination, NPs-Ce4-SN undergoes energy transformation to produce <sup>1</sup>O<sub>2</sub> and subsequently undergoes internal oxidation-reduction reaction to produce NIR-II afterglow, generating high signal-to-noise ratio and high-penetration depth imaging. <i>In vitro</i> and <i>in vivo</i> NIR-II afterglow imaging experiments revealed that NPs-Ce4-SN has good biocompatibility and deep tissue penetration depth, suggesting a diagnostic strategy for <i>in vivo</i> tumor imaging with a high signal-to-noise ratio.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Afterglow fluorescence imaging has been extensively assessed in ultrasensitive bioimaging. Since it eliminates the need for real-time excitation light and thereby circumvents the autofluorescence background of tissue, it holds tremendous potential in accurate biomedical imaging. However, current afterglow probes are rare and emit light only in the visible to near-infrared (NIR) range, which is inadequate for in vivo imaging. To resolve this issue, an ultrasound (US)-activated NIR-II afterglow luminescence probe (NPs-Ce4-SN) emitting afterglow luminescence with a peak at ∼1100 nm was developed. This peak is nearly 400 nm red-shifted compared with other reported afterglow probes. Of note, after US termination, NPs-Ce4-SN undergoes energy transformation to produce 1O2 and subsequently undergoes internal oxidation-reduction reaction to produce NIR-II afterglow, generating high signal-to-noise ratio and high-penetration depth imaging. In vitro and in vivo NIR-II afterglow imaging experiments revealed that NPs-Ce4-SN has good biocompatibility and deep tissue penetration depth, suggesting a diagnostic strategy for in vivo tumor imaging with a high signal-to-noise ratio.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信