Modeling global surface dust deposition using physics-informed neural networks

IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Constanza A. Molina Catricheo, Fabrice Lambert, Julien Salomon, Elwin van ’t Wout
{"title":"Modeling global surface dust deposition using physics-informed neural networks","authors":"Constanza A. Molina Catricheo, Fabrice Lambert, Julien Salomon, Elwin van ’t Wout","doi":"10.1038/s43247-024-01942-2","DOIUrl":null,"url":null,"abstract":"Paleoclimatic measurements serve to understand Earth System processes and evaluate climate model performances. However, their spatial coverage is generally sparse and unevenly distributed across the globe. Statistical interpolation methods are the prevalent techniques to grid such data, but these purely data-driven approaches sometimes produce results that are incoherent with our knowledge of the physical world. Physics-Informed Neural Networks follow an innovative approach to data analysis and physical modeling through machine learning, as they incorporate physical principles into the data-driven learning process. Here, we develop a machine-learning algorithm to reconstruct global maps of atmospheric dust surface deposition fluxes from paleoclimatic archives for the Holocene and Last Glacial Maximum periods. We design an advection-diffusion equation that prevents dust particles from flowing upwind. Our physics-informed neural network improves on kriging interpolation by allowing variable asymmetry around data points. The reconstructions display realistic dust plumes from continental sources towards ocean basins following prevailing winds. Physics-Informed Neural Networks trained with natural dust values and paleoclimatic measurements can reconstruct the global dust deposition during the Holocene and Last Glacial Maximum, complementing traditional kriging reconstruction methods.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-9"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01942-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01942-2","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Paleoclimatic measurements serve to understand Earth System processes and evaluate climate model performances. However, their spatial coverage is generally sparse and unevenly distributed across the globe. Statistical interpolation methods are the prevalent techniques to grid such data, but these purely data-driven approaches sometimes produce results that are incoherent with our knowledge of the physical world. Physics-Informed Neural Networks follow an innovative approach to data analysis and physical modeling through machine learning, as they incorporate physical principles into the data-driven learning process. Here, we develop a machine-learning algorithm to reconstruct global maps of atmospheric dust surface deposition fluxes from paleoclimatic archives for the Holocene and Last Glacial Maximum periods. We design an advection-diffusion equation that prevents dust particles from flowing upwind. Our physics-informed neural network improves on kriging interpolation by allowing variable asymmetry around data points. The reconstructions display realistic dust plumes from continental sources towards ocean basins following prevailing winds. Physics-Informed Neural Networks trained with natural dust values and paleoclimatic measurements can reconstruct the global dust deposition during the Holocene and Last Glacial Maximum, complementing traditional kriging reconstruction methods.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Earth & Environment
Communications Earth & Environment Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
8.60
自引率
2.50%
发文量
269
审稿时长
26 weeks
期刊介绍: Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science. Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信