Gordon B. Bonan, Clara Deser, William R. Wieder, Danica L. Lombardozzi, Flavio Lehner
{"title":"When is a trend meaningful? Insights to carbon cycle variability from an initial-condition large ensemble","authors":"Gordon B. Bonan, Clara Deser, William R. Wieder, Danica L. Lombardozzi, Flavio Lehner","doi":"10.1038/s41612-024-00878-w","DOIUrl":null,"url":null,"abstract":"Internal climate variability (ICV) creates a range of climate trajectories, which are superimposed upon the forced response. A single climate model realization may not represent forced change alone and may diverge from other realizations, as well as observations, due to ICV. We use an initial-condition large ensemble of simulations with the Community Earth System Model (CESM2) to show that ICV produces a range of outcomes in the terrestrial carbon cycle. Trends in gross primary production (GPP) from 1991 to 2020 differ among ensemble members due to the different climate trajectories resulting from ICV. We quantify how ICV imparts on GPP trends and apply our methodology to the observational record. Observed changes in GPP at two long-running eddy covariance flux towers are consistent with ICV, challenging the understanding of forced changes in the carbon cycle at these locations. A probabilistic framework that accounts for ICV is needed to interpret carbon cycle trends.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-11"},"PeriodicalIF":8.5000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00878-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00878-w","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Internal climate variability (ICV) creates a range of climate trajectories, which are superimposed upon the forced response. A single climate model realization may not represent forced change alone and may diverge from other realizations, as well as observations, due to ICV. We use an initial-condition large ensemble of simulations with the Community Earth System Model (CESM2) to show that ICV produces a range of outcomes in the terrestrial carbon cycle. Trends in gross primary production (GPP) from 1991 to 2020 differ among ensemble members due to the different climate trajectories resulting from ICV. We quantify how ICV imparts on GPP trends and apply our methodology to the observational record. Observed changes in GPP at two long-running eddy covariance flux towers are consistent with ICV, challenging the understanding of forced changes in the carbon cycle at these locations. A probabilistic framework that accounts for ICV is needed to interpret carbon cycle trends.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.