Response Surface Methodology-Based Optimization of Coating Material, Coating Thickness, and Diameter of Dental Implant for Enhanced Mechanical Behavior Using Finite Element Method
IF 3.4 3区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Syed Masood Arif Bukhari, Rashida Qurashi, Naveed Husnain, Muhammad Aenan Sadiq, Muhammad Qasim Zafar, Muhammad Tuoqeer Anwar, Saqlain Abbas, Farrukh Arsalan Siddiqui, Sana Sarfraz
{"title":"Response Surface Methodology-Based Optimization of Coating Material, Coating Thickness, and Diameter of Dental Implant for Enhanced Mechanical Behavior Using Finite Element Method","authors":"Syed Masood Arif Bukhari, Rashida Qurashi, Naveed Husnain, Muhammad Aenan Sadiq, Muhammad Qasim Zafar, Muhammad Tuoqeer Anwar, Saqlain Abbas, Farrukh Arsalan Siddiqui, Sana Sarfraz","doi":"10.1002/adem.202401729","DOIUrl":null,"url":null,"abstract":"<p>\nSurface coatings have been found effective to enhance the osseointegration behavior and eliminate the issues associated with titanium implants. This research aims to optimize coating material, coating thickness, and implant diameter for reduced deformation, stress, and strain (response variables) which would enhance the performance. These input variables are optimized and analyzed using response surface methodology (RSM) and finite element method. Four different coating materials, i.e., hydroxyapatite, TiO<sub>2</sub>, TiC, and gold, are selected. Coating thickness is varied from 50 to 170 μm whereas implant body diameter from 4.5 to 5 mm based on RSM's design of experiment (DOE). The designing of dental implants is done in SOLIDWORKS 2023 while simulations are done on Ansys Workbench 19.2 based on DOE. RSM indicates that coating thickness is the most significant variable in determining all the three response variables. Optimized variables are coating thickness of 170 μm, coating material of TiC, and implant diameter of 5 mm. The results from prediction model of RSM are in strong agreement with the simulation results, indicating the validity of model. In terms of mechanical behavior and stability, TiC coating shows the highest desirability (0.988). However, von Mises stress values for all coating materials are in allowable limits.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 24","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401729","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Surface coatings have been found effective to enhance the osseointegration behavior and eliminate the issues associated with titanium implants. This research aims to optimize coating material, coating thickness, and implant diameter for reduced deformation, stress, and strain (response variables) which would enhance the performance. These input variables are optimized and analyzed using response surface methodology (RSM) and finite element method. Four different coating materials, i.e., hydroxyapatite, TiO2, TiC, and gold, are selected. Coating thickness is varied from 50 to 170 μm whereas implant body diameter from 4.5 to 5 mm based on RSM's design of experiment (DOE). The designing of dental implants is done in SOLIDWORKS 2023 while simulations are done on Ansys Workbench 19.2 based on DOE. RSM indicates that coating thickness is the most significant variable in determining all the three response variables. Optimized variables are coating thickness of 170 μm, coating material of TiC, and implant diameter of 5 mm. The results from prediction model of RSM are in strong agreement with the simulation results, indicating the validity of model. In terms of mechanical behavior and stability, TiC coating shows the highest desirability (0.988). However, von Mises stress values for all coating materials are in allowable limits.
期刊介绍:
Advanced Engineering Materials is the membership journal of three leading European Materials Societies
- German Materials Society/DGM,
- French Materials Society/SF2M,
- Swiss Materials Federation/SVMT.