Claude Huniade, Jose G. Martinez, Shayan Mehraeen, Edwin W. H. Jager, Tariq Bashir, Nils-Krister Persson
{"title":"Textile Muscle Fibers Made by and for Continuous Production Using Doped Conducting Polymers","authors":"Claude Huniade, Jose G. Martinez, Shayan Mehraeen, Edwin W. H. Jager, Tariq Bashir, Nils-Krister Persson","doi":"10.1002/mame.202400217","DOIUrl":null,"url":null,"abstract":"<p>Like skeletal muscles having a fibrous structure, conducting polymers can actuate upon electrical stimulation and can be shaped into fibers. Through textile assembly strategies of such fibers, complex actuating architectures are possible. However, state-of-the-art strategies using short pieces of yarn, which compel manual integration, are not fully taking advantage of textiles. To manufacture actuating textiles that best exploit textile properties like softness and pliability, and to enable production upscaling, a production of continuous, actuating fibers is presented here. These fibers are produced from commercial polyamide 6/6 filaments by first continuously dip-coating in a modified commercial poly(3,4−ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) dispersion before the electropolymerization of polypyrrole (PPy), where the fibers are withdrawn continuously through an electrolyte solution containing the pyrrole monomer. By employing a cyclic dip-coating with individual viscosity, drying temperature, and withdrawal speed for each layer, and by adjusting the tension, speed, and applied potential of the electropolymerization, their isotonic strain is enhanced threefold. Their specific tension, at 400<sup> </sup>µN<sup> </sup>tex<sup>−1</sup>, reaches slightly higher than human skeletal muscle fibers. Furthermore, these continuous actuating fibers produced on the meter are processable in an industrial knitting machine. This study anchors the development of textile muscle fibers for future textile muscles.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 12","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400217","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400217","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Like skeletal muscles having a fibrous structure, conducting polymers can actuate upon electrical stimulation and can be shaped into fibers. Through textile assembly strategies of such fibers, complex actuating architectures are possible. However, state-of-the-art strategies using short pieces of yarn, which compel manual integration, are not fully taking advantage of textiles. To manufacture actuating textiles that best exploit textile properties like softness and pliability, and to enable production upscaling, a production of continuous, actuating fibers is presented here. These fibers are produced from commercial polyamide 6/6 filaments by first continuously dip-coating in a modified commercial poly(3,4−ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) dispersion before the electropolymerization of polypyrrole (PPy), where the fibers are withdrawn continuously through an electrolyte solution containing the pyrrole monomer. By employing a cyclic dip-coating with individual viscosity, drying temperature, and withdrawal speed for each layer, and by adjusting the tension, speed, and applied potential of the electropolymerization, their isotonic strain is enhanced threefold. Their specific tension, at 400µNtex−1, reaches slightly higher than human skeletal muscle fibers. Furthermore, these continuous actuating fibers produced on the meter are processable in an industrial knitting machine. This study anchors the development of textile muscle fibers for future textile muscles.
期刊介绍:
Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications.
Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science.
The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments.
ISSN: 1438-7492 (print). 1439-2054 (online).
Readership:Polymer scientists, chemists, physicists, materials scientists, engineers
Abstracting and Indexing Information:
CAS: Chemical Abstracts Service (ACS)
CCR Database (Clarivate Analytics)
Chemical Abstracts Service/SciFinder (ACS)
Chemistry Server Reaction Center (Clarivate Analytics)
ChemWeb (ChemIndustry.com)
Chimica Database (Elsevier)
COMPENDEX (Elsevier)
Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics)
Directory of Open Access Journals (DOAJ)
INSPEC (IET)
Journal Citation Reports/Science Edition (Clarivate Analytics)
Materials Science & Engineering Database (ProQuest)
PASCAL Database (INIST/CNRS)
Polymer Library (iSmithers RAPRA)
Reaction Citation Index (Clarivate Analytics)
Science Citation Index (Clarivate Analytics)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
SCOPUS (Elsevier)
Technology Collection (ProQuest)
Web of Science (Clarivate Analytics)