Effects of oxidation-induced aggregation structure transformation of aramid fiber on interfacial adhesion of epoxy resin

IF 2.7 3区 化学 Q2 POLYMER SCIENCE
Yang Li, Wei Liu, Jiahao Ma, Jingjing Lei, Ziyi Wang, Le Yang
{"title":"Effects of oxidation-induced aggregation structure transformation of aramid fiber on interfacial adhesion of epoxy resin","authors":"Yang Li,&nbsp;Wei Liu,&nbsp;Jiahao Ma,&nbsp;Jingjing Lei,&nbsp;Ziyi Wang,&nbsp;Le Yang","doi":"10.1002/app.56412","DOIUrl":null,"url":null,"abstract":"<p>The large-scale pretreatment and efficient surface activation of aramid fibers (AFs) before composite fabrication remains a major challenge. In this study, we developed a heat treatment–induced surface modification method to change the reactive groups on AFs. Results indicated that the O/C ratio and the number of ester groups on the AFs as well as the surface morphology of the AFs could be flexibly controlled using the heat treatment–induced surface modification method. Furthermore, the surface oxidation mechanism of the AFs changed from point oxidation to surface oxidation during heat treatment. As the heat-treatment time increased, the crystallinity and tensile strength of the AF monofilament considerably increased. An optimal heat-treatment time of 30 min was provided considering that long-time heating (&gt;30 min) would destroy the surface molecular chains. Under this optimal heat-treatment time, the number of ester groups reached the maximum, which enhanced the reactivity of the AFs in the epoxy resin matrix. The interfacial shear strength between the AFs treated for 30 min and epoxy resin microdroplet increased by 12.64%, reaching as high as 18.17 MPa. Moreover, the contact angle between the AF monofilament and epoxy resin droplet reached a minimum value of 54.7°. Furthermore, the thickness of the interfacial bond layer between the AFs and epoxy resin reached 50–60 nm. These results provide effective theoretical guidance for the large-scale application of AFs in composite materials.</p>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"142 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.56412","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The large-scale pretreatment and efficient surface activation of aramid fibers (AFs) before composite fabrication remains a major challenge. In this study, we developed a heat treatment–induced surface modification method to change the reactive groups on AFs. Results indicated that the O/C ratio and the number of ester groups on the AFs as well as the surface morphology of the AFs could be flexibly controlled using the heat treatment–induced surface modification method. Furthermore, the surface oxidation mechanism of the AFs changed from point oxidation to surface oxidation during heat treatment. As the heat-treatment time increased, the crystallinity and tensile strength of the AF monofilament considerably increased. An optimal heat-treatment time of 30 min was provided considering that long-time heating (>30 min) would destroy the surface molecular chains. Under this optimal heat-treatment time, the number of ester groups reached the maximum, which enhanced the reactivity of the AFs in the epoxy resin matrix. The interfacial shear strength between the AFs treated for 30 min and epoxy resin microdroplet increased by 12.64%, reaching as high as 18.17 MPa. Moreover, the contact angle between the AF monofilament and epoxy resin droplet reached a minimum value of 54.7°. Furthermore, the thickness of the interfacial bond layer between the AFs and epoxy resin reached 50–60 nm. These results provide effective theoretical guidance for the large-scale application of AFs in composite materials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Polymer Science
Journal of Applied Polymer Science 化学-高分子科学
CiteScore
5.70
自引率
10.00%
发文量
1280
审稿时长
2.7 months
期刊介绍: The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信