On locally finite groups whose derived subgroup is locally nilpotent

IF 0.8 3区 数学 Q2 MATHEMATICS
Marco Trombetti
{"title":"On locally finite groups whose derived subgroup is locally nilpotent","authors":"Marco Trombetti","doi":"10.1002/mana.202400263","DOIUrl":null,"url":null,"abstract":"<p>A celebrated theorem of Helmut Wielandt shows that the nilpotent residual of the subgroup generated by two subnormal subgroups of a finite group is the subgroup generated by the nilpotent residuals of the subgroups. This result has been extended to saturated formations in Ballester-Bolinches, Ezquerro, and Pedreza-Aguilera [Math. Nachr. 239–240 (2002), 5–10]. Although Wielandt's result is not true in arbitrary locally finite groups, we are able to extend it (even in a stronger form) to homomorphic images of periodic linear groups. Also, all results in Ballester-Bolinches, Ezquerro, and Pedreza-Aguilera [Math. Nachr. 239–240 (2002), 5–10] are extended to locally finite groups, so it is possible to characterize the class of locally finite groups with a locally nilpotent derived subgroup as the largest subgroup-closed saturated formation <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$\\mathfrak {X}$</annotation>\n </semantics></math> such that, for all <span></span><math>\n <semantics>\n <mi>SL</mi>\n <annotation>$\\mathbf {SL}$</annotation>\n </semantics></math>-closed saturated formations <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathfrak {F}$</annotation>\n </semantics></math>, the <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathfrak {F}$</annotation>\n </semantics></math>-residual of an <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$\\mathfrak {X}$</annotation>\n </semantics></math>-group generated by <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathfrak {F}$</annotation>\n </semantics></math>-subnormal subgroups is the subgroup generated by their <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathfrak {F}$</annotation>\n </semantics></math>-residuals. Our proofs are based on a reduction theorem that is of an independent interest. Furthermore, we provide strengthened versions of Wielandt's result for other relevant classes of groups, among which we mention the class of paranilpotent groups. A brief discussion on the permutability of the residuals is given at the end of the paper.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 12","pages":"4389-4400"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400263","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400263","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A celebrated theorem of Helmut Wielandt shows that the nilpotent residual of the subgroup generated by two subnormal subgroups of a finite group is the subgroup generated by the nilpotent residuals of the subgroups. This result has been extended to saturated formations in Ballester-Bolinches, Ezquerro, and Pedreza-Aguilera [Math. Nachr. 239–240 (2002), 5–10]. Although Wielandt's result is not true in arbitrary locally finite groups, we are able to extend it (even in a stronger form) to homomorphic images of periodic linear groups. Also, all results in Ballester-Bolinches, Ezquerro, and Pedreza-Aguilera [Math. Nachr. 239–240 (2002), 5–10] are extended to locally finite groups, so it is possible to characterize the class of locally finite groups with a locally nilpotent derived subgroup as the largest subgroup-closed saturated formation X $\mathfrak {X}$ such that, for all SL $\mathbf {SL}$ -closed saturated formations F $\mathfrak {F}$ , the  F $\mathfrak {F}$ -residual of an X $\mathfrak {X}$ -group generated by F $\mathfrak {F}$ -subnormal subgroups is the subgroup generated by their  F $\mathfrak {F}$ -residuals. Our proofs are based on a reduction theorem that is of an independent interest. Furthermore, we provide strengthened versions of Wielandt's result for other relevant classes of groups, among which we mention the class of paranilpotent groups. A brief discussion on the permutability of the residuals is given at the end of the paper.

关于导出子群为局部零势的局部有限群
Helmut Wielandt的一个著名定理证明了由有限群的两个次正规子群生成的子群的幂零残差是由子群的幂零残差生成的子群。这一结果已经推广到ballester - bol寸、Ezquerro和Pedreza-Aguilera的饱和地层。[j].地理科学,2002(2),5-10。虽然Wielandt的结果在任意局部有限群中是不成立的,但我们可以将它推广到周期线性群的同态象上(甚至以更强的形式)。此外,所有的结果在ballester - bol寸,Ezquerro和Pedreza-Aguilera[数学。Nachr. 239-240(2002), 5-10]推广到局部有限群,因此可以将具有局部幂零派生子群的一类局部有限群刻画为最大子群闭饱和构造X $\mathfrak {X}$,使得:对于所有SL $\mathbf {SL}$ -闭饱和构造F $\mathfrak {F}$,由F $\mathfrak {F}$ -次正规子群生成的X $\mathfrak {X}$ -群的F $\mathfrak {F}$ -残差是由它们的F $\mathfrak {F}$ -残差生成的子群。我们的证明是基于一个具有独立意义的约简定理。此外,我们提供了对其他相关群类的增强版本的Wielandt结果,其中我们提到了副幂群的类。最后对残差的置换性作了简要的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信