Structure of the Kuranishi spaces of pairs of Kähler manifolds and polystable Higgs bundles

IF 0.8 3区 数学 Q2 MATHEMATICS
Takashi Ono
{"title":"Structure of the Kuranishi spaces of pairs of Kähler manifolds and polystable Higgs bundles","authors":"Takashi Ono","doi":"10.1112/blms.13152","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> be a compact Kähler manifold and <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>E</mi>\n <mo>,</mo>\n <msub>\n <mover>\n <mi>∂</mi>\n <mo>¯</mo>\n </mover>\n <mi>E</mi>\n </msub>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(E,\\overline{\\partial }_E,\\theta)$</annotation>\n </semantics></math> be a Higgs bundle over it. We study the structure of the Kuranishi space for the pair <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>E</mi>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(X, E,\\theta)$</annotation>\n </semantics></math> when the Higgs bundle admits a harmonic metric or equivalently when the Higgs bundle is polystable and the Chern classes are 0. Under such assumptions, we show that the Kuranishi space of the pair <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>E</mi>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(X,E,\\theta)$</annotation>\n </semantics></math> is isomorphic to the direct product of the Kuranishi space of <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>E</mi>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(E,\\theta)$</annotation>\n </semantics></math> and the Kuranishi space of <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>. Moreover, when <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> is a Riemann surface and <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>E</mi>\n <mo>,</mo>\n <msub>\n <mover>\n <mi>∂</mi>\n <mo>¯</mo>\n </mover>\n <mi>E</mi>\n </msub>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(E,\\overline{\\partial }_E,\\theta)$</annotation>\n </semantics></math> is stable and the degree is 0, we show that the deformation of the pair <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>E</mi>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(X,E,\\theta)$</annotation>\n </semantics></math> is unobstructed and calculate the dimension of the Kuranishi space.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 12","pages":"3581-3600"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13152","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13152","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let X $X$ be a compact Kähler manifold and ( E , ¯ E , θ ) $(E,\overline{\partial }_E,\theta)$ be a Higgs bundle over it. We study the structure of the Kuranishi space for the pair ( X , E , θ ) $(X, E,\theta)$ when the Higgs bundle admits a harmonic metric or equivalently when the Higgs bundle is polystable and the Chern classes are 0. Under such assumptions, we show that the Kuranishi space of the pair ( X , E , θ ) $(X,E,\theta)$ is isomorphic to the direct product of the Kuranishi space of ( E , θ ) $(E,\theta)$ and the Kuranishi space of X $X$ . Moreover, when X $X$ is a Riemann surface and ( E , ¯ E , θ ) $(E,\overline{\partial }_E,\theta)$ is stable and the degree is 0, we show that the deformation of the pair ( X , E , θ ) $(X,E,\theta)$ is unobstructed and calculate the dimension of the Kuranishi space.

成对凯勒流形和多稳希格斯束的仓西空间结构
设X $X$是一个紧凑的Kähler流形(E,∂¯E,θ) $(E,\overline{\partial }_E,\theta)$是它上面的希格斯束。我们研究了当希格斯束允许一个谐波度规或当希格斯束是多稳态且陈氏类为0时(X, E, θ) $(X, E,\theta)$对的Kuranishi空间的结构。在这样的假设下,我们证明了(X, E, θ) $(X,E,\theta)$对的Kuranishi空间同构于(E,θ) $(E,\theta)$和X的Kuranishi空间$X$。此外,当X $X$是黎曼曲面和(E,∂¯E)时,θ) $(E,\overline{\partial }_E,\theta)$稳定且度为0时,表明(X, E,θ) $(X,E,\theta)$是通畅的,计算Kuranishi空间的维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信