Net Zero Energy-Ready Buildings: A Canadian Construction Perspective and Evaluation

IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Noushad Ahamed Chittoor Mohammed, Kuljeet Singh Grewal, Misbaudeen Aderemi Adesanya, Sudipta Debnath, Aitazaz A. Farooque, Gurpreet Singh Selopal
{"title":"Net Zero Energy-Ready Buildings: A Canadian Construction Perspective and Evaluation","authors":"Noushad Ahamed Chittoor Mohammed,&nbsp;Kuljeet Singh Grewal,&nbsp;Misbaudeen Aderemi Adesanya,&nbsp;Sudipta Debnath,&nbsp;Aitazaz A. Farooque,&nbsp;Gurpreet Singh Selopal","doi":"10.1002/adsu.202400385","DOIUrl":null,"url":null,"abstract":"<p>To attain net zero energy-ready building (NZErB) status, various research efforts have focused on identifying potential strategies and creating stringent code compliances for builders. This review presents a comparative assessment of Canadian newly constructed, retrofitted, and potential retrofit buildings from the mid-1900s to 1990, all aiming for NZErB status. 22 case studies from climate zones 5, 6, and 7a are evaluated, including 12 new constructions and 4 retrofitted, and 6 potential retrofit buildings. A life cycle assessment (LCA) analysis is conducted to understand the environmental impacts of different insulation materials. Additionally, this review highlights retrofitted buildings measures toward climate resilience, challenges inretrofitting, andstrategies for achieving high-quality retrofits. The work concluded that 83.3% of new buildings achieved level 5 in thermal energy demand intensity (TEDI), while 70% of completed and potential retrofits reached level 5 in mechanical energy usage intensity (MEUI). Cellulose insulation showed the lowest global warming potential (GWP) at 12.07 kg CO₂-e·m<sup>−3</sup>. By comparing the performance of new constructions with completed and potential retrofits, this review provides valuable insights into the feasibility and effectiveness of retrofitting older buildings to attain net zero energy readiness.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"8 12","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202400385","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400385","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To attain net zero energy-ready building (NZErB) status, various research efforts have focused on identifying potential strategies and creating stringent code compliances for builders. This review presents a comparative assessment of Canadian newly constructed, retrofitted, and potential retrofit buildings from the mid-1900s to 1990, all aiming for NZErB status. 22 case studies from climate zones 5, 6, and 7a are evaluated, including 12 new constructions and 4 retrofitted, and 6 potential retrofit buildings. A life cycle assessment (LCA) analysis is conducted to understand the environmental impacts of different insulation materials. Additionally, this review highlights retrofitted buildings measures toward climate resilience, challenges inretrofitting, andstrategies for achieving high-quality retrofits. The work concluded that 83.3% of new buildings achieved level 5 in thermal energy demand intensity (TEDI), while 70% of completed and potential retrofits reached level 5 in mechanical energy usage intensity (MEUI). Cellulose insulation showed the lowest global warming potential (GWP) at 12.07 kg CO₂-e·m−3. By comparing the performance of new constructions with completed and potential retrofits, this review provides valuable insights into the feasibility and effectiveness of retrofitting older buildings to attain net zero energy readiness.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信