Nicholas Mackay-Roberts, Christian Bock, Gisela Lannig, Magnus Lucassen, Nina Paul, Elisa Schaum, Bernadette Pogoda, Gunnar Gerdts
{"title":"A benthic mesocosm system for long-term multi-factorial experiments applying predicted warming and realistic microplastic pollution scenarios","authors":"Nicholas Mackay-Roberts, Christian Bock, Gisela Lannig, Magnus Lucassen, Nina Paul, Elisa Schaum, Bernadette Pogoda, Gunnar Gerdts","doi":"10.1002/lom3.10653","DOIUrl":null,"url":null,"abstract":"<p>Predicting anthropogenic impacts on benthic marine ecosystems is of great importance for conservation. Climate change models have indicated that increasing seawater temperatures will drive shifts in the distribution of benthic organisms due to species-specific thermal tolerances. When combined with other stressors such as pollutants, interactive effects may lead to even greater impacts. Microplastics (MP), as a marine pollutant, have been shown to elicit responses in organisms but often at concentrations far greater than experienced in the environment and with short-term exposure times. Assessing long-term interactive effects of MP pollution and ocean warming on benthic marine organisms has not been previously addressed. A unique mesocosm facility was constructed on the island of Helgoland, in the southern North Sea, to explore the combined impacts of these two factors. The multi-factorial experimental system is composed of 16 independent benthic mesocosms, utilizing novel features and methods for the continuous generation of climate change and MP exposure scenarios, while retaining natural conditions for other environmental parameters. We provide a description of the system design and methods, followed by an operational performance assessment during a 10-month exposure experiment with European flat oysters (<i>Ostrea edulis</i>), evaluated on the accuracy of exposure scenario control and the degree of realism achieved. We demonstrate the novel application of kinetic modeling for generating environmentally relevant MP exposure conditions (+ 25 MP L<sup>−1</sup>), and highlight the mesocosm systems suitability for studying chronic effects of MP pollution and ocean warming on benthic marine ecosystems through its real-world application.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":"22 12","pages":"910-929"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10653","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography: Methods","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10653","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting anthropogenic impacts on benthic marine ecosystems is of great importance for conservation. Climate change models have indicated that increasing seawater temperatures will drive shifts in the distribution of benthic organisms due to species-specific thermal tolerances. When combined with other stressors such as pollutants, interactive effects may lead to even greater impacts. Microplastics (MP), as a marine pollutant, have been shown to elicit responses in organisms but often at concentrations far greater than experienced in the environment and with short-term exposure times. Assessing long-term interactive effects of MP pollution and ocean warming on benthic marine organisms has not been previously addressed. A unique mesocosm facility was constructed on the island of Helgoland, in the southern North Sea, to explore the combined impacts of these two factors. The multi-factorial experimental system is composed of 16 independent benthic mesocosms, utilizing novel features and methods for the continuous generation of climate change and MP exposure scenarios, while retaining natural conditions for other environmental parameters. We provide a description of the system design and methods, followed by an operational performance assessment during a 10-month exposure experiment with European flat oysters (Ostrea edulis), evaluated on the accuracy of exposure scenario control and the degree of realism achieved. We demonstrate the novel application of kinetic modeling for generating environmentally relevant MP exposure conditions (+ 25 MP L−1), and highlight the mesocosm systems suitability for studying chronic effects of MP pollution and ocean warming on benthic marine ecosystems through its real-world application.
期刊介绍:
Limnology and Oceanography: Methods (ISSN 1541-5856) is a companion to ASLO''s top-rated journal Limnology and Oceanography, and articles are held to the same high standards. In order to provide the most rapid publication consistent with high standards, Limnology and Oceanography: Methods appears in electronic format only, and the entire submission and review system is online. Articles are posted as soon as they are accepted and formatted for publication.
Limnology and Oceanography: Methods will consider manuscripts whose primary focus is methodological, and that deal with problems in the aquatic sciences. Manuscripts may present new measurement equipment, techniques for analyzing observations or samples, methods for understanding and interpreting information, analyses of metadata to examine the effectiveness of approaches, invited and contributed reviews and syntheses, and techniques for communicating and teaching in the aquatic sciences.