{"title":"On the real spectrum of differential operators with PT-symmetric periodic matrix coefficients","authors":"Oktay A. Veliev","doi":"10.1002/mana.202300558","DOIUrl":null,"url":null,"abstract":"<p>We study the spectrum of the operator <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> generated by the differential expression of order <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>></mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n&gt;2$</annotation>\n </semantics></math> with the <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>×</mo>\n <mi>m</mi>\n </mrow>\n <annotation>$m\\times m$</annotation>\n </semantics></math> Parity-Time (PT)-symmetric periodic matrix coefficients. The case when <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> are the odd numbers was investigated in [18]. In this paper, we consider the all remained cases: (a) <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> is an odd number and <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> is an even number, (b) <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> is an even number and <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> is an arbitrary positive integer. We find conditions on the coefficients under which in the cases (a) and (b) the spectrum of <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> contains the sets <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mi>∞</mi>\n <mo>,</mo>\n <mo>−</mo>\n <mi>H</mi>\n <mo>]</mo>\n </mrow>\n <annotation>$(-\\infty,-H]$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mrow>\n <mo>∪</mo>\n <mo>[</mo>\n <mi>H</mi>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\cup [H,\\infty)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mo>[</mo>\n <mi>H</mi>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$[H,\\infty)$</annotation>\n </semantics></math> respectively for some <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$H&gt;0$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 12","pages":"4437-4449"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300558","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the spectrum of the operator generated by the differential expression of order with the Parity-Time (PT)-symmetric periodic matrix coefficients. The case when and are the odd numbers was investigated in [18]. In this paper, we consider the all remained cases: (a) is an odd number and is an even number, (b) is an even number and is an arbitrary positive integer. We find conditions on the coefficients under which in the cases (a) and (b) the spectrum of contains the sets and respectively for some .
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index