Disjoint p $p$ -convergent operators and their adjoints

IF 0.8 3区 数学 Q2 MATHEMATICS
Geraldo Botelho, Luis Alberto Garcia, Vinícius C. C. Miranda
{"title":"Disjoint \n \n p\n $p$\n -convergent operators and their adjoints","authors":"Geraldo Botelho,&nbsp;Luis Alberto Garcia,&nbsp;Vinícius C. C. Miranda","doi":"10.1002/mana.202300561","DOIUrl":null,"url":null,"abstract":"<p>First, we give conditions on a Banach lattice <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math> so that an operator <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> from <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math> to any Banach space is disjoint <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-convergent if and only if <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> is almost Dunford–Pettis. Then, we study when adjoints of positive operators between Banach lattices are disjoint <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-convergent. For instance, we prove that the following conditions are equivalent for all Banach lattices <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>: (i) a positive operator <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mo>:</mo>\n <mi>E</mi>\n <mo>→</mo>\n <mi>F</mi>\n </mrow>\n <annotation>$T: E \\rightarrow F$</annotation>\n </semantics></math> is almost weak <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-convergent if and only if <span></span><math>\n <semantics>\n <msup>\n <mi>T</mi>\n <mo>∗</mo>\n </msup>\n <annotation>$T^*$</annotation>\n </semantics></math> is disjoint <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-convergent; (ii) <span></span><math>\n <semantics>\n <msup>\n <mi>E</mi>\n <mo>∗</mo>\n </msup>\n <annotation>$E^*$</annotation>\n </semantics></math> has order continuous norm or <span></span><math>\n <semantics>\n <msup>\n <mi>F</mi>\n <mo>∗</mo>\n </msup>\n <annotation>$F^*$</annotation>\n </semantics></math> has the positive Schur property of order <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>. Very recent results are improved, examples are given and applications of the main results are provided.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 12","pages":"4766-4777"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300561","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

First, we give conditions on a Banach lattice E $E$ so that an operator T $T$ from E $E$ to any Banach space is disjoint p $p$ -convergent if and only if T $T$ is almost Dunford–Pettis. Then, we study when adjoints of positive operators between Banach lattices are disjoint p $p$ -convergent. For instance, we prove that the following conditions are equivalent for all Banach lattices E $E$ and F $F$ : (i) a positive operator T : E F $T: E \rightarrow F$ is almost weak p $p$ -convergent if and only if T $T^*$ is disjoint p $p$ -convergent; (ii) E $E^*$ has order continuous norm or F $F^*$ has the positive Schur property of order p $p$ . Very recent results are improved, examples are given and applications of the main results are provided.

不相交p$ p$ -收敛算子及其伴随
首先,我们给出了在Banach格E$ E$上的条件,使得从E$ E$到任意Banach空间的算子T$ T$是不相交p$ p$ -收敛的当且仅当T$ T$几乎是Dunford-Pettis。然后,我们研究了Banach格间正算子的共轭不相交p$ p$ -收敛的情况。例如,我们证明了下列条件对于所有的Banach格E$ E$和F$ F$是等价的:(i)一个正算子T: E→F$ T;当且仅当T *$ T^*$是不相交的p$ p$ -收敛时,E \右列F$是几乎弱p$ p$ -收敛的;(ii) E *$ E^*$具有阶连续范数或F *$ F^*$具有阶p$ p$的正舒尔性质。对最近的结果进行了改进,给出了实例,并给出了主要结果的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信