Geraldo Botelho, Luis Alberto Garcia, Vinícius C. C. Miranda
{"title":"Disjoint \n \n p\n $p$\n -convergent operators and their adjoints","authors":"Geraldo Botelho, Luis Alberto Garcia, Vinícius C. C. Miranda","doi":"10.1002/mana.202300561","DOIUrl":null,"url":null,"abstract":"<p>First, we give conditions on a Banach lattice <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math> so that an operator <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> from <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math> to any Banach space is disjoint <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-convergent if and only if <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> is almost Dunford–Pettis. Then, we study when adjoints of positive operators between Banach lattices are disjoint <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-convergent. For instance, we prove that the following conditions are equivalent for all Banach lattices <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>: (i) a positive operator <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mo>:</mo>\n <mi>E</mi>\n <mo>→</mo>\n <mi>F</mi>\n </mrow>\n <annotation>$T: E \\rightarrow F$</annotation>\n </semantics></math> is almost weak <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-convergent if and only if <span></span><math>\n <semantics>\n <msup>\n <mi>T</mi>\n <mo>∗</mo>\n </msup>\n <annotation>$T^*$</annotation>\n </semantics></math> is disjoint <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-convergent; (ii) <span></span><math>\n <semantics>\n <msup>\n <mi>E</mi>\n <mo>∗</mo>\n </msup>\n <annotation>$E^*$</annotation>\n </semantics></math> has order continuous norm or <span></span><math>\n <semantics>\n <msup>\n <mi>F</mi>\n <mo>∗</mo>\n </msup>\n <annotation>$F^*$</annotation>\n </semantics></math> has the positive Schur property of order <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>. Very recent results are improved, examples are given and applications of the main results are provided.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 12","pages":"4766-4777"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300561","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
First, we give conditions on a Banach lattice so that an operator from to any Banach space is disjoint -convergent if and only if is almost Dunford–Pettis. Then, we study when adjoints of positive operators between Banach lattices are disjoint -convergent. For instance, we prove that the following conditions are equivalent for all Banach lattices and : (i) a positive operator is almost weak -convergent if and only if is disjoint -convergent; (ii) has order continuous norm or has the positive Schur property of order . Very recent results are improved, examples are given and applications of the main results are provided.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index