Construction of epoxy resin with enhanced flame retardancy, mechanical properties, and satisfactory transparency based on a novel bi-DOPO and hydrogen-bonding network

IF 2.7 3区 化学 Q2 POLYMER SCIENCE
Xiaoling Lin, Xingzhen Xiao, Dingsi Li, Yonghui Wang, Xinrong Chen, Wei Zhong, Jiashui Lan, Simeng Zhang, Huagui Zhang, Mingfeng Chen
{"title":"Construction of epoxy resin with enhanced flame retardancy, mechanical properties, and satisfactory transparency based on a novel bi-DOPO and hydrogen-bonding network","authors":"Xiaoling Lin,&nbsp;Xingzhen Xiao,&nbsp;Dingsi Li,&nbsp;Yonghui Wang,&nbsp;Xinrong Chen,&nbsp;Wei Zhong,&nbsp;Jiashui Lan,&nbsp;Simeng Zhang,&nbsp;Huagui Zhang,&nbsp;Mingfeng Chen","doi":"10.1002/app.56415","DOIUrl":null,"url":null,"abstract":"<p>Establishment of high-performance epoxy resin with satisfactory fire safety, mechanical properties, and excellent transparency is urgently desirable, but still remains significant challenges. Herein, a super-tough yet high flame retardant epoxy resin (EP/BTD) was designed and prepared by incorporating bi-DOPO structure and hydrogen-bonding networks. Although the phosphorus content was only 0.69 wt% (10 wt% of bi-DOPO flame retardant [BTD]), EP/BTD-10 showed a high limiting oxygen index value (33.4%), satisfactory UL-94 rating (V-0), and good heat suppression ability (total heat release [THR] and peak heat release rate [PHRR] reduced to 29.0% and 42.2%, respectively). Furthermore, the flame retardant mechanism of EP/BTD was illustrated and attributed to dual-phase fire-retardant effect. Additionally, EP/BTD-7.5 featured notably mechanical properties, of which the tensile strength, elongation at break and impact strength increased by 44.6%, 40.0%, and 232.6%, respectively, due to hydrogen-bonding network and π–π interaction. More importantly, EP/BTD maintained high visible light transmittance and excellent UV-blocking properties. In summary, this work provided a guidance for the development of high-performance epoxy resin and was expected to expand the practical applications.</p>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"142 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.56415","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Establishment of high-performance epoxy resin with satisfactory fire safety, mechanical properties, and excellent transparency is urgently desirable, but still remains significant challenges. Herein, a super-tough yet high flame retardant epoxy resin (EP/BTD) was designed and prepared by incorporating bi-DOPO structure and hydrogen-bonding networks. Although the phosphorus content was only 0.69 wt% (10 wt% of bi-DOPO flame retardant [BTD]), EP/BTD-10 showed a high limiting oxygen index value (33.4%), satisfactory UL-94 rating (V-0), and good heat suppression ability (total heat release [THR] and peak heat release rate [PHRR] reduced to 29.0% and 42.2%, respectively). Furthermore, the flame retardant mechanism of EP/BTD was illustrated and attributed to dual-phase fire-retardant effect. Additionally, EP/BTD-7.5 featured notably mechanical properties, of which the tensile strength, elongation at break and impact strength increased by 44.6%, 40.0%, and 232.6%, respectively, due to hydrogen-bonding network and π–π interaction. More importantly, EP/BTD maintained high visible light transmittance and excellent UV-blocking properties. In summary, this work provided a guidance for the development of high-performance epoxy resin and was expected to expand the practical applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Polymer Science
Journal of Applied Polymer Science 化学-高分子科学
CiteScore
5.70
自引率
10.00%
发文量
1280
审稿时长
2.7 months
期刊介绍: The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信