An Adaptive Combined Method for Lithium-Ion Battery State of Charge Estimation Using Long Short-Term Memory Network and Unscented Kalman Filter Considering Battery Aging

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY
Longchen Lyu, Bo Jiang, Jiangong Zhu, Xuezhe Wei, Haifeng Dai
{"title":"An Adaptive Combined Method for Lithium-Ion Battery State of Charge Estimation Using Long Short-Term Memory Network and Unscented Kalman Filter Considering Battery Aging","authors":"Longchen Lyu,&nbsp;Bo Jiang,&nbsp;Jiangong Zhu,&nbsp;Xuezhe Wei,&nbsp;Haifeng Dai","doi":"10.1002/batt.202400441","DOIUrl":null,"url":null,"abstract":"<p>The accurate estimation of battery state of charge (SOC) enables the reliable and safe operation of lithium-ion batteries. Data-driven SOC estimation is considered an emerging and effective solution. However, existing data-driven SOC estimation methods typically involve direct estimation and lack effective feedback correction. Moreover, battery degradation poses additional challenges to accurate SOC estimation. Therefore, this study proposes an adaptive combined method for battery SOC estimation based on a long short-term memory (LSTM) network and unscented Kalman filter (UKF) algorithm considering battery aging status. First, an LSTM model is constructed to characterize the battery's dynamic performance instead of traditional battery models. Then, the UKF algorithm is employed to perform SOC estimation through the feedback of terminal voltage prediction. To enhance estimation accuracy under different aging statuses, a proportional-integral-derivative controller is employed to correct the capacity fading during the SOC estimation process. Validation results indicate that the terminal voltage prediction model demonstrates exceptional robustness against interference from current and voltage noise. Compared to the traditional estimation method combining the deep learning model and Kalman filter algorithm, the proposed method demonstrates superior estimation accuracy under various complex operating conditions. Furthermore, the proposed method outperforms the traditional method in estimation performance during battery aging.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 12","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400441","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate estimation of battery state of charge (SOC) enables the reliable and safe operation of lithium-ion batteries. Data-driven SOC estimation is considered an emerging and effective solution. However, existing data-driven SOC estimation methods typically involve direct estimation and lack effective feedback correction. Moreover, battery degradation poses additional challenges to accurate SOC estimation. Therefore, this study proposes an adaptive combined method for battery SOC estimation based on a long short-term memory (LSTM) network and unscented Kalman filter (UKF) algorithm considering battery aging status. First, an LSTM model is constructed to characterize the battery's dynamic performance instead of traditional battery models. Then, the UKF algorithm is employed to perform SOC estimation through the feedback of terminal voltage prediction. To enhance estimation accuracy under different aging statuses, a proportional-integral-derivative controller is employed to correct the capacity fading during the SOC estimation process. Validation results indicate that the terminal voltage prediction model demonstrates exceptional robustness against interference from current and voltage noise. Compared to the traditional estimation method combining the deep learning model and Kalman filter algorithm, the proposed method demonstrates superior estimation accuracy under various complex operating conditions. Furthermore, the proposed method outperforms the traditional method in estimation performance during battery aging.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信