Preparation of low-temperature self-crosslinking acrylic resin and its performance research

IF 2.7 3区 化学 Q2 POLYMER SCIENCE
Hua Xin, Peiyi Zhang, Yiyi Xu, Bo Gao, Luoqi Yuan, Minli Wei
{"title":"Preparation of low-temperature self-crosslinking acrylic resin and its performance research","authors":"Hua Xin,&nbsp;Peiyi Zhang,&nbsp;Yiyi Xu,&nbsp;Bo Gao,&nbsp;Luoqi Yuan,&nbsp;Minli Wei","doi":"10.1002/app.56393","DOIUrl":null,"url":null,"abstract":"<p>Acrylic resin, as a common coating and adhesive, possesses excellent heat resistance, weather resistance, and is inexpensive, making it widely used in industries related to automotive, construction, electronics, fabrics, and other sectors essential to our daily life. Traditional acrylic resin not only pollutes the environment but also poses certain health risks. Therefore, we studied the synthesis of a low-temperature self-crosslinking acrylic emulsions were synthesized by free radical solution polymerization using methyl methacrylate (MMA), butyl acrylate (BA), acrylic acid (AA), diacetone acrylamide (DAAM), hydroxypropyl acrylate (HPA), epoxy resin (E-51) as the monomers, vinyltriethoxysilane (A-51) as the coupling agent, and adipic dihydrazide (ADH) as the cross-linking agent. This water-based acrylic resin undergoes a crosslinking reaction between the carbonyl group of DAAM and the hydrazide group of ADH, substantially improved the drying speed and adhesion compared to unmodified versions, and also improved the thermal stability. The contact angle of the film increased from 72.8° to 86.9° with the increase of the degree of cross-linking, and the mechanical properties were improved by 60%. This study provides a suitable formulation for preparing water-based acrylic resins with superior performance.</p>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"142 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.56393","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Acrylic resin, as a common coating and adhesive, possesses excellent heat resistance, weather resistance, and is inexpensive, making it widely used in industries related to automotive, construction, electronics, fabrics, and other sectors essential to our daily life. Traditional acrylic resin not only pollutes the environment but also poses certain health risks. Therefore, we studied the synthesis of a low-temperature self-crosslinking acrylic emulsions were synthesized by free radical solution polymerization using methyl methacrylate (MMA), butyl acrylate (BA), acrylic acid (AA), diacetone acrylamide (DAAM), hydroxypropyl acrylate (HPA), epoxy resin (E-51) as the monomers, vinyltriethoxysilane (A-51) as the coupling agent, and adipic dihydrazide (ADH) as the cross-linking agent. This water-based acrylic resin undergoes a crosslinking reaction between the carbonyl group of DAAM and the hydrazide group of ADH, substantially improved the drying speed and adhesion compared to unmodified versions, and also improved the thermal stability. The contact angle of the film increased from 72.8° to 86.9° with the increase of the degree of cross-linking, and the mechanical properties were improved by 60%. This study provides a suitable formulation for preparing water-based acrylic resins with superior performance.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Polymer Science
Journal of Applied Polymer Science 化学-高分子科学
CiteScore
5.70
自引率
10.00%
发文量
1280
审稿时长
2.7 months
期刊介绍: The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信