{"title":"Simultaneous Triboelectric and Mechanoluminescence Sensing Toward Self-Powered Applications","authors":"Sugato Hajra, Swati Panda, Seongkyu Song, Heewon Song, Basanta Kumar Panigrahi, Soon Moon Jeong, Yogendra Kumar Mishra, Hoe Joon Kim","doi":"10.1002/adsu.202400609","DOIUrl":null,"url":null,"abstract":"<p>Simultaneous phenomena of triboelectricity and mechanoluminescence (ML) acquire vital insights into the mechanics of charge separation and recombination, as well as the relationship between mechanical stress and light emission. In the present work, polydimethylsiloxane (PDMS) and ZnS:Cu particle-based composites are fabricated, which have good ML characteristics and can generate electricity via contact electrification. ML, in conjunction with a triboelectric nanogenerator (TENG), contributes by producing power from mechanical operations while also giving vital visual input in the form of light emission. This dual capability improves user awareness and efficiency in a variety of applications, making mechanical systems and wearable devices easier to monitor and optimize. To accomplish this, a single-electrode mode silver (Ag) nanowires embedded PDMS-ZnS: Cu-based TENG device is developed and achieved an electrical output of 60 V, 395 nA, and 15 nC by using a linear motor. Furthermore, the combined ML and TENG device is employed in various cases of safety monitoring. This integration provides self-powered devices that detect mechanical stress, delivering real-time warnings and illumination signals for increased safety and communication in demanding conditions such as SOS signaling, underwater driving, deep mining, and sports.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"8 12","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400609","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Simultaneous phenomena of triboelectricity and mechanoluminescence (ML) acquire vital insights into the mechanics of charge separation and recombination, as well as the relationship between mechanical stress and light emission. In the present work, polydimethylsiloxane (PDMS) and ZnS:Cu particle-based composites are fabricated, which have good ML characteristics and can generate electricity via contact electrification. ML, in conjunction with a triboelectric nanogenerator (TENG), contributes by producing power from mechanical operations while also giving vital visual input in the form of light emission. This dual capability improves user awareness and efficiency in a variety of applications, making mechanical systems and wearable devices easier to monitor and optimize. To accomplish this, a single-electrode mode silver (Ag) nanowires embedded PDMS-ZnS: Cu-based TENG device is developed and achieved an electrical output of 60 V, 395 nA, and 15 nC by using a linear motor. Furthermore, the combined ML and TENG device is employed in various cases of safety monitoring. This integration provides self-powered devices that detect mechanical stress, delivering real-time warnings and illumination signals for increased safety and communication in demanding conditions such as SOS signaling, underwater driving, deep mining, and sports.
期刊介绍:
Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.