Well-posedness of the two-dimensional stationary Navier–Stokes equations around a uniform flow

IF 0.8 3区 数学 Q2 MATHEMATICS
Mikihiro Fujii, Hiroyuki Tsurumi
{"title":"Well-posedness of the two-dimensional stationary Navier–Stokes equations around a uniform flow","authors":"Mikihiro Fujii,&nbsp;Hiroyuki Tsurumi","doi":"10.1002/mana.202400011","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the solvability of the two-dimensional stationary Navier–Stokes equations on the whole plane <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <annotation>$\\mathbb {R}^2$</annotation>\n </semantics></math>. In Fujii [Ann. PDE, 10 (2024), no. 1. Paper No. 10], it was proved that the stationary Navier–Stokes equations on <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <annotation>$\\mathbb {R}^2$</annotation>\n </semantics></math> is ill-posed for solutions around zero. In contrast, considering solutions around the nonzero constant flow, the perturbed system has a better regularity in the linear part, which enables us to prove the unique existence of solutions in the scaling critical spaces of the Besov type.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 12","pages":"4401-4415"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400011","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the solvability of the two-dimensional stationary Navier–Stokes equations on the whole plane R 2 $\mathbb {R}^2$ . In Fujii [Ann. PDE, 10 (2024), no. 1. Paper No. 10], it was proved that the stationary Navier–Stokes equations on R 2 $\mathbb {R}^2$ is ill-posed for solutions around zero. In contrast, considering solutions around the nonzero constant flow, the perturbed system has a better regularity in the linear part, which enables us to prove the unique existence of solutions in the scaling critical spaces of the Besov type.

围绕均匀流动的二维平稳Navier-Stokes方程的适定性
本文考虑二维平稳Navier-Stokes方程在整个平面r2 $\mathbb {R}^2$上的可解性。在藤井[安。PDE, 10 (2024), no。1. 证明了r2 $\mathbb {R}^2$上的平稳Navier-Stokes方程在零附近解是病态的。相比之下,考虑非零常流周围的解,摄动系统在线性部分具有更好的正则性,这使我们能够证明解在Besov型标度临界空间中的唯一存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信