A Time-Saving Method for Evaluating the Fatigue Strength of Carburized High-Alloy Steel Containing Carbides

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zikuan Xu, Xuezhong Gu, Xiaolong Liu, Weihao Chen, Bin Wang, Peng Zhang, Maosheng Yang, Hongxiao Chi, Zhefeng Zhang
{"title":"A Time-Saving Method for Evaluating the Fatigue Strength of Carburized High-Alloy Steel Containing Carbides","authors":"Zikuan Xu,&nbsp;Xuezhong Gu,&nbsp;Xiaolong Liu,&nbsp;Weihao Chen,&nbsp;Bin Wang,&nbsp;Peng Zhang,&nbsp;Maosheng Yang,&nbsp;Hongxiao Chi,&nbsp;Zhefeng Zhang","doi":"10.1002/adem.202402041","DOIUrl":null,"url":null,"abstract":"<p>To propose a time-saving method for evaluating the fatigue strength of carburized steel, the fatigue behavior and fracture mechanism of carburized 14Cr14Co13Mo5 steels are studied by the rotary bending fatigue tests. It is found that the fatigue crack initiation site changes from surface to internal after carburizing due to the residual compressive stress and carbide cluster caused by the carburization. Besides, a notable correlation between the stress intensity of the cracked carbides at fatigue crack initiation site and fatigue life is observed in the carburized samples. This correlation allows for the estimation of fatigue strength at long conditional life based on samples tested at relatively high stress amplitudes with short lives, achieving a prediction error within 10% for the material studied. A significant time saving of ≈65% compared to the staircase method is achieved. The proposed method has significant implications for improving the efficiency fatigue strength evaluation in carburized steels containing carbides.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 24","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202402041","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To propose a time-saving method for evaluating the fatigue strength of carburized steel, the fatigue behavior and fracture mechanism of carburized 14Cr14Co13Mo5 steels are studied by the rotary bending fatigue tests. It is found that the fatigue crack initiation site changes from surface to internal after carburizing due to the residual compressive stress and carbide cluster caused by the carburization. Besides, a notable correlation between the stress intensity of the cracked carbides at fatigue crack initiation site and fatigue life is observed in the carburized samples. This correlation allows for the estimation of fatigue strength at long conditional life based on samples tested at relatively high stress amplitudes with short lives, achieving a prediction error within 10% for the material studied. A significant time saving of ≈65% compared to the staircase method is achieved. The proposed method has significant implications for improving the efficiency fatigue strength evaluation in carburized steels containing carbides.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信