Model reference adaptive hierarchical control framework for shake table tests

IF 4.3 2区 工程技术 Q1 ENGINEERING, CIVIL
Zhongwei Chen, T. Y. Yang, Yifei Xiao, Xiao Pan, Wanyan Yang
{"title":"Model reference adaptive hierarchical control framework for shake table tests","authors":"Zhongwei Chen,&nbsp;T. Y. Yang,&nbsp;Yifei Xiao,&nbsp;Xiao Pan,&nbsp;Wanyan Yang","doi":"10.1002/eqe.4256","DOIUrl":null,"url":null,"abstract":"<p>The structural response under earthquake excitation can be simulated by shake table tests. However, the performance of the shake table is affected by the Control-Structure Interaction (CSI) effect. In recent years, nonlinear control algorithms were developed to compensate for the CSI effect. In this study, a model reference adaptive control algorithm, named model reference adaptive hierarchical control (MRAHC) framework, is presented. MRAHC consists of a high (adaptive) and low (loop-shaping) level controller. The high-level (adaptive) controller develops the control algorithm on the system level, which directedly considers the inherent nonlinearity of the test specimen and the CSI effect. While the low-level (loop-shaping) controller develops the control algorithm to regulate the hydraulic system and make sure it can follow the reference signal generated by the high-level (adaptive) controller. MRAHC offers many advantages including direct compensation to the structural nonlinearity and the ability to handle the CSI effect. In addition, it allows users to quantify the mass of the test specimens without measurement. To evaluate the performance of the MRAHC method, shake table tests with different upper structure masses were carried out. The performance of the MRAHC was compared with the direct loop-shaping control method (LC) and the Proportional-Integral-Differentiation control method (PID). The results show that the MRAHC can achieve better acceleration tracking compared to the LC and PID control methods. Hence, the MRAHC can be used as an effective nonlinear controller for shake table tests.</p>","PeriodicalId":11390,"journal":{"name":"Earthquake Engineering & Structural Dynamics","volume":"54 1","pages":"346-362"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eqe.4256","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering & Structural Dynamics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eqe.4256","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The structural response under earthquake excitation can be simulated by shake table tests. However, the performance of the shake table is affected by the Control-Structure Interaction (CSI) effect. In recent years, nonlinear control algorithms were developed to compensate for the CSI effect. In this study, a model reference adaptive control algorithm, named model reference adaptive hierarchical control (MRAHC) framework, is presented. MRAHC consists of a high (adaptive) and low (loop-shaping) level controller. The high-level (adaptive) controller develops the control algorithm on the system level, which directedly considers the inherent nonlinearity of the test specimen and the CSI effect. While the low-level (loop-shaping) controller develops the control algorithm to regulate the hydraulic system and make sure it can follow the reference signal generated by the high-level (adaptive) controller. MRAHC offers many advantages including direct compensation to the structural nonlinearity and the ability to handle the CSI effect. In addition, it allows users to quantify the mass of the test specimens without measurement. To evaluate the performance of the MRAHC method, shake table tests with different upper structure masses were carried out. The performance of the MRAHC was compared with the direct loop-shaping control method (LC) and the Proportional-Integral-Differentiation control method (PID). The results show that the MRAHC can achieve better acceleration tracking compared to the LC and PID control methods. Hence, the MRAHC can be used as an effective nonlinear controller for shake table tests.

Abstract Image

振动台试验的模型参考自适应分层控制框架
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earthquake Engineering & Structural Dynamics
Earthquake Engineering & Structural Dynamics 工程技术-工程:地质
CiteScore
7.20
自引率
13.30%
发文量
180
审稿时长
4.8 months
期刊介绍: Earthquake Engineering and Structural Dynamics provides a forum for the publication of papers on several aspects of engineering related to earthquakes. The problems in this field, and their solutions, are international in character and require knowledge of several traditional disciplines; the Journal will reflect this. Papers that may be relevant but do not emphasize earthquake engineering and related structural dynamics are not suitable for the Journal. Relevant topics include the following: ground motions for analysis and design geotechnical earthquake engineering probabilistic and deterministic methods of dynamic analysis experimental behaviour of structures seismic protective systems system identification risk assessment seismic code requirements methods for earthquake-resistant design and retrofit of structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信