Suspended Sediment Transport and Storage in Arctic Deltas

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
C. Hines, A. Piliouras
{"title":"Suspended Sediment Transport and Storage in Arctic Deltas","authors":"C. Hines,&nbsp;A. Piliouras","doi":"10.1029/2024JF007802","DOIUrl":null,"url":null,"abstract":"<p>River fluxes to the Arctic Ocean impact sea ice extent, nutrient availability, and coastal ecosystems. Arctic river deltas modulate fluxes of water, sediment, and nutrients reaching the Arctic Ocean. Many large rivers have estimates or measurements of discharge and sediment concentration upstream of the delta apex, but the magnitude, timing, and spatial distribution of sediment fluxes to the Arctic coast are unknown. We developed a novel reduced-complexity model of suspended sediment transport in Arctic deltas to address this knowledge gap. The model estimates suspended sediment delivery to the coast based on a computed channel network and sediment transport rules. We applied this model to six high-latitude deltas during their open water seasons with different boundary conditions to account for their differences in morphology, seasonality, and hydrology. Flux distributions at the coast are found to be more uneven in larger deltas due to uneven channel spacing and larger variability in channel widths compared with smaller deltas. Given typical active season conditions, the deltas exhibit periods of deposition and erosion but are net depositional overall. Net sediment trapping during the active season ranges from 10% to 70%. Our results suggest that larger, more complex deltas with higher sediment supply and less flashy hydrographs store the most sediment and may therefore be more resilient to land loss. The sediment flux distribution can be used in future studies of coastal biogeochemistry and geomorphology and in regional models to capture the impacts of fluxes on turbidity, marine primary productivity, and Arctic warming.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 12","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007802","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF007802","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

River fluxes to the Arctic Ocean impact sea ice extent, nutrient availability, and coastal ecosystems. Arctic river deltas modulate fluxes of water, sediment, and nutrients reaching the Arctic Ocean. Many large rivers have estimates or measurements of discharge and sediment concentration upstream of the delta apex, but the magnitude, timing, and spatial distribution of sediment fluxes to the Arctic coast are unknown. We developed a novel reduced-complexity model of suspended sediment transport in Arctic deltas to address this knowledge gap. The model estimates suspended sediment delivery to the coast based on a computed channel network and sediment transport rules. We applied this model to six high-latitude deltas during their open water seasons with different boundary conditions to account for their differences in morphology, seasonality, and hydrology. Flux distributions at the coast are found to be more uneven in larger deltas due to uneven channel spacing and larger variability in channel widths compared with smaller deltas. Given typical active season conditions, the deltas exhibit periods of deposition and erosion but are net depositional overall. Net sediment trapping during the active season ranges from 10% to 70%. Our results suggest that larger, more complex deltas with higher sediment supply and less flashy hydrographs store the most sediment and may therefore be more resilient to land loss. The sediment flux distribution can be used in future studies of coastal biogeochemistry and geomorphology and in regional models to capture the impacts of fluxes on turbidity, marine primary productivity, and Arctic warming.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信