Singular loci of algebras over ramified discrete valuation rings

IF 0.8 3区 数学 Q2 MATHEMATICS
Nawaj KC
{"title":"Singular loci of algebras over ramified discrete valuation rings","authors":"Nawaj KC","doi":"10.1112/blms.13174","DOIUrl":null,"url":null,"abstract":"<p>When <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> is a field, the classical Jacobian criterion computes the singular locus of an equidimensional, finitely generated <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-algebra as the closed subset of an ideal generated by appropriate minors of the so-called Jacobian matrix. Recently, Hochster-Jeffries and Saito have extended this result for algebras over any unramified discrete valuation ring of mixed characteristic via the use of <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-derivations. Motivated by these results, in this paper, we state and prove an analogous Jacobian criterion for algebras over ramified discrete valuation rings of mixed characteristic.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 12","pages":"3883-3894"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13174","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13174","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

When k $k$ is a field, the classical Jacobian criterion computes the singular locus of an equidimensional, finitely generated k $k$ -algebra as the closed subset of an ideal generated by appropriate minors of the so-called Jacobian matrix. Recently, Hochster-Jeffries and Saito have extended this result for algebras over any unramified discrete valuation ring of mixed characteristic via the use of p $p$ -derivations. Motivated by these results, in this paper, we state and prove an analogous Jacobian criterion for algebras over ramified discrete valuation rings of mixed characteristic.

Abstract Image

分枝离散估值环上代数的奇异轨迹
当k$ k$是一个场时,经典雅可比准则计算一个等维的、有限生成的k$ k$ -代数的奇异轨迹,它是由所谓雅可比矩阵的适当次元生成的理想的闭子集。最近,hochester - jeffries和Saito利用p$ p$ -导数,将这一结果推广到任意混合特征的非分枝离散赋值环上的代数。在这些结果的推动下,本文给出并证明了一类具有混合特征的分枝离散估值环上代数的类似雅可比准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信