Asymptotic dimension for covers with controlled growth

IF 1 2区 数学 Q1 MATHEMATICS
David Hume, John M. Mackay, Romain Tessera
{"title":"Asymptotic dimension for covers with controlled growth","authors":"David Hume,&nbsp;John M. Mackay,&nbsp;Romain Tessera","doi":"10.1112/jlms.70043","DOIUrl":null,"url":null,"abstract":"<p>We prove various obstructions to the existence of regular maps (or coarse embeddings) between commonly studied spaces. For instance, there is no regular map (or coarse embedding) <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mi>n</mi>\n </msup>\n <mo>→</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>×</mo>\n <mi>Y</mi>\n </mrow>\n <annotation>$\\mathbb {H}^n\\rightarrow \\mathbb {H}^{n-1}\\times Y$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$n\\geqslant 3$</annotation>\n </semantics></math>, or <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>T</mi>\n <mn>3</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mi>n</mi>\n </msup>\n <mo>→</mo>\n <msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>T</mi>\n <mn>3</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>×</mo>\n <mi>Y</mi>\n </mrow>\n <annotation>$(T_3)^n \\rightarrow (T_3)^{n-1}\\times Y$</annotation>\n </semantics></math> whenever <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math> is a bounded degree graph with subexponential growth, where <span></span><math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mn>3</mn>\n </msub>\n <annotation>$T_3$</annotation>\n </semantics></math> is the 3-regular tree. We also resolve Question 5.2 (<i>Groups Geom. Dyn</i>. <b>6</b> (2012), no. 4, 639–658), proving that there is no regular map <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n <mo>→</mo>\n <msub>\n <mi>T</mi>\n <mn>3</mn>\n </msub>\n <mo>×</mo>\n <mi>Y</mi>\n </mrow>\n <annotation>$\\mathbb {H}^2 \\rightarrow T_3 \\times Y$</annotation>\n </semantics></math> whenever <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math> is a bounded degree graph with at most polynomial growth, and no quasi-isometric embedding whenever <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math> has subexponential growth. Finally, we show that there is no regular map <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>F</mi>\n <mi>n</mi>\n </msup>\n <mo>→</mo>\n <mi>Z</mi>\n <mo>≀</mo>\n <msup>\n <mi>F</mi>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$F^n\\rightarrow \\mathbb {Z}\\wr F^{n-1}$</annotation>\n </semantics></math> where <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math> is the free group on two generators. To prove these results, we introduce and study generalisations of asymptotic dimension that allow unbounded covers with controlled growth.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70043","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70043","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove various obstructions to the existence of regular maps (or coarse embeddings) between commonly studied spaces. For instance, there is no regular map (or coarse embedding) H n H n 1 × Y $\mathbb {H}^n\rightarrow \mathbb {H}^{n-1}\times Y$ for n 3 $n\geqslant 3$ , or ( T 3 ) n ( T 3 ) n 1 × Y $(T_3)^n \rightarrow (T_3)^{n-1}\times Y$ whenever Y $Y$ is a bounded degree graph with subexponential growth, where T 3 $T_3$ is the 3-regular tree. We also resolve Question 5.2 (Groups Geom. Dyn. 6 (2012), no. 4, 639–658), proving that there is no regular map H 2 T 3 × Y $\mathbb {H}^2 \rightarrow T_3 \times Y$ whenever Y $Y$ is a bounded degree graph with at most polynomial growth, and no quasi-isometric embedding whenever Y $Y$ has subexponential growth. Finally, we show that there is no regular map F n Z F n 1 $F^n\rightarrow \mathbb {Z}\wr F^{n-1}$ where F $F$ is the free group on two generators. To prove these results, we introduce and study generalisations of asymptotic dimension that allow unbounded covers with controlled growth.

Abstract Image

有控制增长的封面的渐近维度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信