Radhika Natarajan, Sharmila Lydia I, Megarajan Sengan, Cristian H. Campos, Princy Merlin J.
{"title":"Luminescent ZnSe/ZnO Heterostructures for Photocatalytic Degradation of Azophloxine Dye and Bioimaging Applications","authors":"Radhika Natarajan, Sharmila Lydia I, Megarajan Sengan, Cristian H. Campos, Princy Merlin J.","doi":"10.1002/bio.70032","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Herein, we demonstrate a simple hydrothermal route to synthesizing ZnSe/ZnO type II heterostructure using L-cysteine as a capping agent. The use of nanomaterials in bioimaging and photocatalysis towards the degradation of Azophloxine dye is of potential interest. The synthesized ZnSe/ZnO nanomaterials were characterized by UV–Vis absorption spectroscopy, fluorescence spectroscopy, IR spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. It exhibits a strong sharp emission at 465 nm in fluorescence spectroscopy. The synthesized nanomaterials were used as an excellent fluorescence probe for imaging live-cell bacteria such as <i>E. coli</i> and <i>S. aureus</i> compared with the commercial staining dye PI (propidium iodide). The synthesized ZnSe/ZnO possess more photo-stability and showed excellent photocatalytic activity for the degradation of azophloxine dye under sunlight.</p>\n </div>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"39 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Luminescence","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bio.70032","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, we demonstrate a simple hydrothermal route to synthesizing ZnSe/ZnO type II heterostructure using L-cysteine as a capping agent. The use of nanomaterials in bioimaging and photocatalysis towards the degradation of Azophloxine dye is of potential interest. The synthesized ZnSe/ZnO nanomaterials were characterized by UV–Vis absorption spectroscopy, fluorescence spectroscopy, IR spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. It exhibits a strong sharp emission at 465 nm in fluorescence spectroscopy. The synthesized nanomaterials were used as an excellent fluorescence probe for imaging live-cell bacteria such as E. coli and S. aureus compared with the commercial staining dye PI (propidium iodide). The synthesized ZnSe/ZnO possess more photo-stability and showed excellent photocatalytic activity for the degradation of azophloxine dye under sunlight.
期刊介绍:
Luminescence provides a forum for the publication of original scientific papers, short communications, technical notes and reviews on fundamental and applied aspects of all forms of luminescence, including bioluminescence, chemiluminescence, electrochemiluminescence, sonoluminescence, triboluminescence, fluorescence, time-resolved fluorescence and phosphorescence. Luminescence publishes papers on assays and analytical methods, instrumentation, mechanistic and synthetic studies, basic biology and chemistry.
Luminescence also publishes details of forthcoming meetings, information on new products, and book reviews. A special feature of the Journal is surveys of the recent literature on selected topics in luminescence.