Jinqi Qin, Hongwei Lu, Shijia Yang, Weitao Su, Yu Xing
{"title":"Research Progress in Dielectric Properties of Inorganic Two-Dimensional Nano-Fillers Polyvinylidene Fluoride Nano-Dielectric Materials","authors":"Jinqi Qin, Hongwei Lu, Shijia Yang, Weitao Su, Yu Xing","doi":"10.1002/ente.202400967","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional (2D) nanofillers can effectively improve the performance of nano-dielectrics by having larger aspect ratios and larger electron-scattering interfaces than one-dimensional (1D) nanofillers and zero-dimensional (0D) nanofillers; the formation of a large interfacial area in the polymer matrix effectively traps or scatters the mobile charges and increases the curvature of the propagation paths of the electric tree, thus effectively increasing the breakdown strength and the energy-storage density of nanodielectrics. In this article, the intrinsic mechanism of 2D nanodielectrics is elaborated using percolation theory, microcapacitance theory, interfacial model, and ping-pong racket model. Surface modification, oriented alignment, and multilayer structural design are reviewed to enhance the dielectric properties of nanodielectrics. Additionally, an outlook on the multiple challenges and potential opportunities in the process of preparing energy-storage capacitors with excellent performance is provided.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"12 12","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400967","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2D) nanofillers can effectively improve the performance of nano-dielectrics by having larger aspect ratios and larger electron-scattering interfaces than one-dimensional (1D) nanofillers and zero-dimensional (0D) nanofillers; the formation of a large interfacial area in the polymer matrix effectively traps or scatters the mobile charges and increases the curvature of the propagation paths of the electric tree, thus effectively increasing the breakdown strength and the energy-storage density of nanodielectrics. In this article, the intrinsic mechanism of 2D nanodielectrics is elaborated using percolation theory, microcapacitance theory, interfacial model, and ping-pong racket model. Surface modification, oriented alignment, and multilayer structural design are reviewed to enhance the dielectric properties of nanodielectrics. Additionally, an outlook on the multiple challenges and potential opportunities in the process of preparing energy-storage capacitors with excellent performance is provided.
期刊介绍:
Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy.
This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g.,
new concepts of energy generation and conversion;
design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers;
improvement of existing processes;
combination of single components to systems for energy generation;
design of systems for energy storage;
production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels;
concepts and design of devices for energy distribution.