A portable low-cost incubation chamber for real-time characterization of soil respiration

Thi Thuc Nguyen, Ariel Altman, Laibin Huang, Jorge L. Mazza Rodrigues, Helen E. Dahlke, Nina A. Kamennaya, Elad Levintal
{"title":"A portable low-cost incubation chamber for real-time characterization of soil respiration","authors":"Thi Thuc Nguyen,&nbsp;Ariel Altman,&nbsp;Laibin Huang,&nbsp;Jorge L. Mazza Rodrigues,&nbsp;Helen E. Dahlke,&nbsp;Nina A. Kamennaya,&nbsp;Elad Levintal","doi":"10.1002/saj2.20800","DOIUrl":null,"url":null,"abstract":"<p>Monitoring CO<sub>2</sub> or O<sub>2</sub> concentrations within a closed, volume-defined chamber is widely used to quantify soil respiration during laboratory soil incubation experiments. The standard method of using periodic manual gas sampling is costly, labor-intensive, and frequently fails to capture the aerobic respiration process. Thus, tools that allow continuous, real-time tracking of CO<sub>2</sub> and O<sub>2</sub> concentration changes are needed for soil respiration research. This study presents a new, portable, low-cost (∼$700), open-source sensor system to measure CO<sub>2</sub> and O<sub>2</sub> concentrations in four closed chambers. We provided non-engineering end-users with step-by-step instructions on how to build the system, enabling replication and customization. System performance was tested by comparing two respiration rates using the same soil—soil with and without glucose added for 1 week. Consistent CO<sub>2</sub> production and O<sub>2</sub> consumption rates were measured at 1-min intervals, and the reliability of the system was validated by a trace gas analyzer. Two distinctive continuous apparent respiratory quotient time series between two soil treatments were observed, with higher values of CO<sub>2</sub> in glucose soil, demonstrating the ability of the system to capture ongoing respiration processes and sufficient sensitivity to distinguish differences among respiration substrates (i.e., glucose). The tested performance of the system highlights its capabilities for soil respiration research and the potential for further adoption in real-time gas monitoring applications.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/saj2.20800","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings - Soil Science Society of America","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/saj2.20800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring CO2 or O2 concentrations within a closed, volume-defined chamber is widely used to quantify soil respiration during laboratory soil incubation experiments. The standard method of using periodic manual gas sampling is costly, labor-intensive, and frequently fails to capture the aerobic respiration process. Thus, tools that allow continuous, real-time tracking of CO2 and O2 concentration changes are needed for soil respiration research. This study presents a new, portable, low-cost (∼$700), open-source sensor system to measure CO2 and O2 concentrations in four closed chambers. We provided non-engineering end-users with step-by-step instructions on how to build the system, enabling replication and customization. System performance was tested by comparing two respiration rates using the same soil—soil with and without glucose added for 1 week. Consistent CO2 production and O2 consumption rates were measured at 1-min intervals, and the reliability of the system was validated by a trace gas analyzer. Two distinctive continuous apparent respiratory quotient time series between two soil treatments were observed, with higher values of CO2 in glucose soil, demonstrating the ability of the system to capture ongoing respiration processes and sufficient sensitivity to distinguish differences among respiration substrates (i.e., glucose). The tested performance of the system highlights its capabilities for soil respiration research and the potential for further adoption in real-time gas monitoring applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信