Deconstructible abstract elementary classes of modules and categoricity

IF 0.8 3区 数学 Q2 MATHEMATICS
Jan Šaroch, Jan Trlifaj
{"title":"Deconstructible abstract elementary classes of modules and categoricity","authors":"Jan Šaroch,&nbsp;Jan Trlifaj","doi":"10.1112/blms.13172","DOIUrl":null,"url":null,"abstract":"<p>We prove a version of Shelah's categoricity conjecture for arbitrary deconstructible classes of modules. Moreover, we show that if <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> is a deconstructible class of modules that fits in an abstract elementary class <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>A</mi>\n <mo>,</mo>\n <mo>⪯</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathcal {A},\\preceq)$</annotation>\n </semantics></math> such that (1) <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> is closed under direct summands and (2) <span></span><math>\n <semantics>\n <mo>⪯</mo>\n <annotation>$\\preceq$</annotation>\n </semantics></math> refines direct summands, then <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> is closed under arbitrary direct limits. In the Appendix, we prove that the assumption (2) is not needed in some models of ZFC.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 12","pages":"3854-3866"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13172","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13172","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a version of Shelah's categoricity conjecture for arbitrary deconstructible classes of modules. Moreover, we show that if A $\mathcal {A}$ is a deconstructible class of modules that fits in an abstract elementary class ( A , ) $(\mathcal {A},\preceq)$ such that (1) A $\mathcal {A}$ is closed under direct summands and (2) $\preceq$ refines direct summands, then A $\mathcal {A}$ is closed under arbitrary direct limits. In the Appendix, we prove that the assumption (2) is not needed in some models of ZFC.

可解构抽象基本类的模块和范畴
我们证明了任意可解构模块类的Shelah范畴猜想的一个版本。此外,我们证明了如果A $\mathcal {A}$是一个可解构的模块类,它适合于一个抽象的基本类(A),⪯)$ (\mathcal {A},\ precq)$使得(1)A $\mathcal {A}$在直接求和下闭,(2)⪯$\ precq $精炼直接求和,则A $\mathcal {A}$在任意直接极限下闭。在附录中,我们证明了在ZFC的一些模型中不需要假设(2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信